
DOpusARexxTute

The Phantom writer and -)

DOpusARexxTute ii

COLLABORATORS

TITLE :

DOpusARexxTute

ACTION NAME DATE SIGNATURE

WRITTEN BY The Phantom writer
and -)

February 11, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

DOpusARexxTute iii

Contents

1 DOpusARexxTute 1

1.1 DOpus Magellan II ARexx Tutorial . 1

1.2 Magellan II ARexx Tutorial: Introduction . 5

1.3 Magellan II ARexx Tutorial: Requirements . 6

1.4 Magellan II ARexx Tutorial: Resources . 6

1.5 Magellan II ARexx Tutorial: Format of this tutorial . 7

1.6 The Opus Screen/Window . 8

1.7 Magellan II ARexx Tutorial: DOpus Front and Back . 9

1.8 Magellan II ARexx Tutorial: Dopus Screen . 10

1.9 Magellan II ARexx Tutorial: Dopus Query . 11

1.10 Magellan II ARexx Tutorial: Dopus Set . 11

1.11 Magellan II ARexx Tutorial: Dopus Getdesktop . 14

1.12 Magellan II ARexx Tutorial: Dopus Desktoppopup . 16

1.13 Version and Errors . 17

1.14 Magellan II ARexx Tutorial: DOpus Version . 18

1.15 Magellan II ARexx Tutorial: DOpus Error . 19

1.16 Getting input from the user . 20

1.17 Magellan II ARexx Tutorial: DOpus Request . 20

1.18 Magellan II ARexx Tutorial: DOpus Getstring . 21

1.19 Magellan II ARexx Tutorial: Lister Request . 22

1.20 Magellan II ARexx Tutorial: Lister Getstring . 22

1.21 Opening and closing listers . 23

1.22 Magellan II ARexx Tutorial: Lister New . 24

1.23 Magellan II ARexx Tutorial: Lister Close . 25

1.24 Magellan II ARexx Tutorial: Lister Iconify . 26

1.25 Magellan II ARexx Tutorial: Lister Read . 26

1.26 Magellan II ARexx Tutorial: Lister Copy . 27

1.27 Magellan II ARexx Tutorial: Lister Wait . 27

1.28 Providing some feedback . 28

1.29 Magellan II ARexx Tutorial: Dopus Read . 29

DOpusARexxTute iv

1.30 Magellan II ARexx Tutorial: Dopus Progress . 30

1.31 Magellan II ARexx Tutorial: Lister Progress . 31

1.32 Magellan II ARexx Tutorial: Lister NewProgress . 32

1.33 Magellan II ARexx Tutorial: Finding and Setting Lister Attributes . 32

1.34 Magellan II ARexx Tutorial: Lister Query . 33

1.35 Magellan II ARexx Tutorial: Lister Set . 36

1.36 Magellan II ARexx Tutorial: Lister Set Position . 37

1.37 Magellan II ARexx Tutorial: Lister Visible . 38

1.38 Magellan II ARexx Tutorial: The Phantom is... 38

1.39 Magellan II ARexx Tutorial: Manipulating Lister Entries . 38

1.40 Magellan II ARexx Tutorial: Dopus Getfiletype . 39

1.41 Magellan II ARexx Tutorial: Lister Query Entry . 40

1.42 Magellan II ARexx Tutorial: Lister Select . 42

1.43 Magellan II ARexx Tutorial: Lister Remove . 42

1.44 Magellan II ARexx Tutorial: Lister Add . 43

1.45 Magellan II ARexx Tutorial: Lister Addstem . 44

1.46 Magellan II ARexx Tutorial: Command . 46

1.47 Magellan II ARexx Tutorial: FTP Commands . 48

1.48 Magellan II ARexx Tutorial: Opus v4 functions . 51

1.49 Magellan II ARexx Tutorial: Integration . 54

1.50 Magellan II ARexx Tutorial: Opus and AWeb II v2.x . 55

1.51 Magellan II ARexx Tutorial: Some ideas . 55

1.52 Magellan II ARexx Tutorial: Opening a lister with the path of your current shell 56

1.53 Magellan II ARexx Tutorial: Changing the shell path to the same as the lister 57

1.54 Magellan II ARexx Tutorial: Improved DOS-DOpus script (Example 1) . 58

1.55 Example 6: Changing the background every 30 seconds . 59

1.56 Magellan II ARexx Tutorial: Simple ARexx Module #1 . 59

1.57 Magellan II ARexx Tutorial: Simple ARexx Module #2 . 61

1.58 Magellan II ARexx Tutorial: Multi-Command ARexx Module . 65

1.59 Magellan II ARexx Tutorial: A Simple Custom Handler for a Lister . 67

1.60 Magellan II ARexx Tutorial: A Simple Custom Handler for an AppIcon . 70

1.61 Magellan II ARexx Tutorial: Improving the inbuilt commands . 74

1.62 Magellan II ARexx Tutorial: Cloning source listers . 76

1.63 Magellan II ARexx Tutorial: Finding duplicated files in two listers . 77

1.64 Magellan II ARexx Tutorial: Adding a bit of Win95 . 79

1.65 Magellan II ARexx Tutorial: Adding a directory tree function . 80

1.66 Magellan II ARexx Tutorial: An Opus v4 CopyWin replacement . 83

1.67 Magellan II ARexx Tutorial: An Opus v4 SwapWin replacement . 84

1.68 Magellan II ARexx Tutorial: TroubleShooting . 87

DOpusARexxTute v

1.69 Magellan II ARexx Tutorial: TroubleShooting - The simple things . 87

1.70 Magellan II ARexx Tutorial: TroubleShooting - ARexx error codes . 88

1.71 Magellan II ARexx Tutorial: TroubleShooting - ARexx tracing . 90

1.72 Magellan II ARexx Tutorial: TroubleShooting - The OpusCLI . 91

1.73 Magellan II ARexx Tutorial: Credits . 92

1.74 Magellan II ARexx Tutorial: Dopus User Position . 93

1.75 Magellan II ARexx: Results from commands. 93

1.76 Magellan II ARexx Tutorial: Error Codes . 94

1.77 Magellan II ARexx Tutorial: Author . 95

1.78 ArcDir.dopus5: Intro . 95

1.79 ArcDir.dopus5: Setup . 97

1.80 ArcDir.dopus5: Handler . 98

1.81 ArcDir.dopus5: Capturing an event . 99

1.82 ArcDir.dopus5: Event - Miscellaneous . 100

1.83 ArcDir.dopus5: Event - doubleclick . 101

1.84 ArcDir.dopus5: Event - drop . 102

1.85 ArcDir.dopus5: Event - dropfrom . 103

1.86 ArcDir.dopus5: Event - Copy . 104

1.87 ArcDir.dopus5: Event - View commands . 104

1.88 ArcDir.dopus5: Event - Unsupported . 105

1.89 ArcDir.dopus5: Event - Anything else . 105

1.90 ArcDir.dopus5: Cleaning Up . 106

1.91 ArcDir.dopus5: Parent/Root action . 106

1.92 ArcDir.dopus5: Path gadget action . 108

1.93 ArcDir.dopus5: Delete action . 109

1.94 ArcDir.dopus5: Making new directories . 112

1.95 ArcDir.dopus5: Create Directories . 113

1.96 ArcDir.dopus5: Listing the archive . 114

1.97 ArcDir.dopus5: Extracting from the archive . 116

1.98 ArcDir.dopus5: Adding to the archive . 119

1.99 ArcDir.dopus5: Viewing a file . 122

1.100ArcDir.dopus5: Getting all the files . 123

1.101ArcDir.dopus5: Patching filenames . 124

1.102ArcDir.dopus5: Getting catalog string . 125

1.103ArcDir.dopus5: Checking for valid handler . 126

1.104ArcDir.dopus5: Syntax error . 126

1.105ArcDir.dopus5: User halts script . 127

1.106ArcDir.dopus5: Displaying errors . 127

1.107ArcDir.dopus5: Displaying a requester . 128

DOpusARexxTute 1 / 128

Chapter 1

DOpusARexxTute

1.1 DOpus Magellan II ARexx Tutorial

Welcome to the wonderful world of the Directory Opus ←↩
Magellan II

ARexx interface

Come aboard for a fascinating journey through the twisted mind of an
unqualified person who is trying to impart some knowledge upon other people.

It’ll make you laugh, it’ll make you cry.

WARNING: Parts of this guide have been subjected to a ’dry’ sense of humour,
if you find one please return it to the owner.

Introduction
What is this?

Requirements
You want what!

Resources
Never enough...

Format
Nice hard drive ;^)

Credits
Uh oh, Martin’s in trouble >:-|

Author
The character that wrote this tripe.

Where the results end up
I want results!

Where the error come from

DOpusARexxTute 2 / 128

It’s all Opus’ fault.

The Opus Screen/Window

dopus front / back
A view to a kill.

dopus screen
You’ll get square eyes.

dopus query
Well, I didn’t know that!

dopus set
in concrete.

dopus getdesktop
Watch it, that’s oak!

dopus checkdesktop
Quick, what’s in the drawers?!

dopus matchdesktop
A right pair they make.

dopus desktoppopup
Yoohoo, I’m over here!

Version and Errors

dopus version
Next year’s model.

dopus error
A problem? Never!

Getting information from the user

dopus request
I get a choice?

dopus getstring
I value your input.

lister request
I can’t make up my mind.

lister getstring
Who asked you?

Opening and Closing Listers

lister new

DOpusARexxTute 3 / 128

Come on, open up.

lister close
Drink up, it’s closing time.

lister iconify
I feel really small.

lister read
Every path a story.

lister copy
We’re all clones...

lister wait
As if we don’t do enough already.

Giving the user some feedback

dopus read
It’s learnt to read!

dopus progress
We’re moving!

lister progress
We progress through this, to...

lister newprogress
Nothing stands in the way of progress.

Finding and Setting Lister Attributes

lister query
Hello sailor...

lister set
A change is as good as a holiday...NOT!

lister position
Position number 217...

lister visible
Now you see me, now you don’t.

File Manipulation and Information

dopus getfiletype
Stereotyped again!

lister query entry
No, you can’t come in!

lister select

DOpusARexxTute 4 / 128

I want that one!

lister remove
You don’t get rid of me that easily!

lister add
1 and 1 is 3...err...2

lister addstem
Nuffin’ ’rong wi’ a bit a graft guv’.

Calling the Internal Commands

command
"By your command..."

Using OpusFTP Functions

Missing Directory Opus 4 commands?

CopyWin

SwapWin

Troubleshooting

The simple things
in life are very expensive.

ARexx error codes
Most of it a trial, all of it in error.

ARexx tracing
We know where you are.

The Opus CLI
A commanding position.

Integrating Opus and other Programs

Opus - AWeb-II v2
"Come in to my parlour", said the spider.

Some ideas for you to start with :)
Wouldn’t want me to wear my brains out :)

ArcDir.dopus5

Example 1: Opening a lister to the path of your current shell

Example 2: Changing your shell path to the same as the lister

DOpusARexxTute 5 / 128

Example 3: An improved DOS-DOpus script (Example 1)

Example 4: Copying Source lister to Destination lister

Example 5: Swapping the Source and Destination listers

Example 6: Changing the background every 30 seconds

Example 7: Simple ARexx module #1

Example 8: Simple ARexx module #2

Example 9: Using a module to do other things

Example 10: A Simple Custom Handler for a Lister

Example 11: A Simple Custom Handler for an AppIcon

Example 12: Improving the internal commands

Example 13: Cloning Source listers

Example 14: Comparing files in two listers

Example 15: Adding a bit of Win95 BLAH!!

Example 16: Adding a simple directory tree function

Example: Finding All listers

Example: Finding the Active lister and the State

Example: Finding the current Source lister

Example: Finding the current Destination lister

1.2 Magellan II ARexx Tutorial: Introduction

The idea of this guide is to introduce users to some of the ←↩
basic functions

of Directory Opus’ ARexx interface, hoping to allow the user expand upon and
create scripts of their own.

This tutorial will not provide examples of every command available, I’d be
here from now until Christmas trying to do that, rather it will attempt to
show you a general cross-section of the commands available and the context
in which these commands are used by using small demonstration scripts that
can be executed from within this guide.

The DOpus ARexx command interface has been split into three base commands,
with parameters and sub-commands specifying what action should be performed.

From the DOpus manual, the three base commands are:

DOpusARexxTute 6 / 128

- dopus (for access to things not falling into the two categories below).
- lister (manipulates lister information, attributes, entries, etc).
- command (allows you to call the internal commands of DOpus from ARexx).

The end of this guide will include some simple ’ARexx modules’, and a
’custom handler’ example to illustrate how these commands can all be used
to extend the power of DOpus. Some of the more powerful ARexx commands will
be described in this section, as they are uniquely suited to these functions.

All the examples in this tutorial can be found in the DOpus5:Help/TuteRexx
directory. In all except a very few cases, they can be run from a shell.
They can be used as a basis for your own script, or as a drop-in subroutine
for your script.

See the
Resources
section for more information regarding sources

of Directory Opus information and help.

1.3 Magellan II ARexx Tutorial: Requirements

This guide assumes the user has a basic knowledge of ARexx, (that is,
ARexx is correctly installed and available to the system, you listening
Ash? :) and Directory Opus Magellan II is installed, [as Workbench
Replacement (WBR) or standalone].

Note: Most of the information in this guide will refer to listers in
Name mode, and Opus as a Workbench Replacement.

It will also assume that the Opus ARexx port name is ’DOPUS.1’.

If you find that the examples in this guide don’t work it could
be because Opus isn’t running, or you have closed the first
Opus interface and are using another one, (ie. you’ve run the
Opus program more than once, and closed the original).

Pressing this button will run an ARexx script that will check your
system, prompting you if there is anything that will prevent the examples
from running correctly.

References will be given back to DOpusM2_ARexx.guide and
DOpus5.guide , both should be available in the directory DOpus5:Help/, for

command parameters and format, if it isn’t there then the links to them will
not work.

They should have been installed there as part of the default Directory Opus
installation procedure.

1.4 Magellan II ARexx Tutorial: Resources

DOpusARexxTute 7 / 128

Here I will just mention some of the other information resources for
creating ARexx scripts for Directory Opus.

As always there is the unrivalled Aminet software archive. Scripts,
patches, configurations, etc specific to Directory Opus can be found in the
directory biz/dopus in the Aminet directory tree.

The best way in which to learn about the Opus ARexx interface is to
download scripts and look at what they do and how they do it.

There is also the Directory Opus v5 Mailing List available to anyone who
wants to be bombarded with lots of useless email :^)

You can subscribe to the list by sending an email to:

listserv@lss.com.au

with the following as the message text:

subscribe dopus5 <your email address>

You will recieve a welcome message detailing the commands available, and
then the cra...eeerrr, the help should start rolling in ;^)

Updates, announcements, and other sundry items of interest can be found on
the GPSoftware WWW page, located at http://www.gpsoft.com.au.

Bug reports and requests for help can also be be sent to Dr Greg Perry at
greg@gpsoft.com.au, you will need to send your registration number
in the message if you expect a response. (But try the mailing list first,
we’re a much more forgiving bunch, heh heh heh |^)

For general ARexx programming information there is, of course, Aminet. Try
the util/rexx directory for lots of examples.

Also available, is an excellent ARexx tutorial, written by Robin Evans, it
is available from http://www.halcyon.com/robin/www/arexxguide/main.html.

1.5 Magellan II ARexx Tutorial: Format of this tutorial

This guide is designed so that the user starts at the beginning ←↩
and then

just steps forward through it. It is not designed for jumping from one
topic to another, but the Contents are provided as a shortcut to a specific
section.

The format of commands will not be extensively covered, as this tutorial
is more concerned with teaching the basic commands and the context they’re
used in.

Each description of a command will provide a link to the main Opus ARexx
reference, the DOpusM2_ARexx.guide. The DOpusM2_ARexx.guide will provide
you with the command parameters and format required for that particular
command.

DOpusARexxTute 8 / 128

A typical description will look like this:

The first commands we’ll look at are the dopus front and dopus back .

They can be used within an ARexx script like so:

/* DOpus front/back test */
address ’DOPUS.1’ /* Open DOpus’ ARexx port */
dopus front /* Bring the DOpus display to the front */
address command wait 2 /* Wait for 2 seconds */
dopus back /* Send the DOpus display to the back */
exit /* Exit the script */

You will notice that dopus front and dopus back are buttons, clicking
on them will load the DOpusM2_ARexx.guide reference, open at the correct
page for that command.

The ARexx comment for the example script is also a button, clicking on
that will run that particular example script.

With some commands you will also see a button labelled
ArcDir

, hitting
this button will take you to a section of Edmund’s ArcDir script to show you
where this command is used as a practical example.

All of the scripts are generally written in lower case for clarity,
excessive use of upper case characters tends to make texts hard to read
because all the letters are the same height and the eye tends to start
skipping over them.

There are no TABs used in this guide, TABs suck :) If there are TABs, who
told you, you could put them in? >:-|

Indenting is set to two spaces to get as much as possible on screen, and
not lose the readability it provides.

What the script looks like in this guide will be what it looks like in
reality, with a few exceptions, for example, the commands ’Lister Query’ and
’Lister Set’. So if you prefer you can cut and paste from within this guide
using PowerSnap or something similar.

Now that I’ve inflicted upon you my sense of style, on with the show...

1.6 The Opus Screen/Window

This section will look at commands that have to do with the Opus ←↩
Desktop,

whether it be a screen or window.

DOpusARexxTute 9 / 128

There are only nine commands that either influence or obtain information
from Opus regarding the Desktop. They are:-

dopus back

dopus front
These two commands just move the Opus Desktop to the front or ←↩

back, useful
for showing a user that there is something to see or that requires their
attention on the Desktop.

dopus screen
Returns information regarding Opus’ screen name, screen size/ ←↩

depth and
default lister size.

dopus query
Let’s you get information on the current backgrounds, sounds, ←↩

palette, pens
and fonts. It is the complement to the dopus set command.

dopus set
This command is used extensively for the Opus themes system. If ←↩

you have
some themes installed you will find plenty of additional examples of the
usage of this command in the D5Themes: directory. Every (name).theme file
is an ARexx script containing many dopus set commands.

dopus getdesktop

dopus checkdesktop

dopus matchdesktop
These three commands allow you to manipulate the Opus Desktop to ←↩

a limited
degree. It is not the same as the dopus set command, they do not affect
the look of the Desktop, rather they can help you to add programs to the
Desktop.

dopus desktopopup
This command causes the Desktop popup menu to appear under the ←↩

mouse,
allowing the user to choose from one of the choices.

1.7 Magellan II ARexx Tutorial: DOpus Front and Back

The dopus front and dopus back are self-explanatory, all
they do is move the Opus screen or window to the front or back of your

DOpusARexxTute 10 / 128

display.

They can be used within an ARexx script like so:

/* DOpusFrontBack.dopus5 */
address ’DOPUS.1’ /* Address the Opus ARexx port */
dopus front /* Bring the DOpus display to the front */
address command wait 2 /* Wait for 2 seconds */
dopus back /* Send the DOpus display to the back */
exit /* Exit the script */

If you were running this tutorial as a window on an Opus screen which is
set to Backdrop, (Opus menu), then all you would have noticed is that the
window would have become deactivated.

These would have to be the simplest commands in the Opus ARexx interface.

1.8 Magellan II ARexx Tutorial: Dopus Screen

The dopus screen command allows you to find out the dimensions of the Opus
display, this can be useful for positioning of listers, viewers, etc, by
using a simple algorythm to provide a position that will fit on screen.

It also returns the current Opus screen name, and will set RC to 5 if
Opus happens to be iconified at the time.

The default size of your listers is also returned.

Example:

/* DopusScreen.dopus5 */
options results
lf = ’0a’x
address ’DOPUS.1’
dopus front
dopus screen
if rc = 5 then do

address command ’RequestChoice "Opus is iconified" "OK"’
exit
end

dimensions = result
text = ’The Opus screen name is: ’word(dimensions,1)
dopus request ’"’text’" OK’
text = ’The Opus screen is ’word(dimensions,2)’ pixels wide’||lf||,

’and ’word(dimensions,3)’ high.’
dopus request ’"’text’" OK’
text = ’The titlebar is ’word(dimensions,5)’ pixels high, and’||lf||,

’it is a ’word(dimensions,4)’ bit screen.’
dopus request ’"’text’" OK’
x = trunc(word(dimensions,2) / 2) - trunc(word(dimensions,6) / 2)
y = trunc((word(dimensions,3) - word(dimensions,5)) / 2) - trunc(word(dimensions ←↩

,7) / 2)
position = x’/’y’/’word(dimensions,6)’/’word(dimensions,7)
lister new position
handle = result
text = ’This lister is in the screen centre,’,

||lf||’taking the titlebar height into account’,

DOpusARexxTute 11 / 128

||lf||’and is the default size.’
lister request handle ’"’text’" OK’
lister close handle
dopus back
exit

1.9 Magellan II ARexx Tutorial: Dopus Query

New for Magellan II

The dopus query command complements the dopus set command, allows you
to read various Opus settings such as; backgrounds, fonts, palette, pens, and
sounds.

For instance, while running your script you might want to change the
background of the lister to a picture displaying your name, you can find
out what the current background is, change it with dopus set then restore
it when the script exits.

Example:

/* DopusQuery.dopus5 */
options results
lf = ’0a’x
address ’DOPUS.1’
dopus front
dopus query font screen
text = ’Current Opus screen font:’||lf||word(result,1)||lf||’Size: ’word(result,2)
dopus request ’"’text’" OK’
dopus query background lister
text = ’Current icon lister background: ’||lf||word(result,1)||lf||’Options: ’ ←↩

subword(result,2)
dopus request ’"’text’" OK’
dopus query sound Startup
text = ’Sound you hear when Opus starts:’||lf||word(result,1)||lf||’Volume: ’word(←↩

result,2)
dopus request ’"’text’" OK’
dopus query pens gauge
text = ’Current fuel gauge colours when:’||lf||’Full: ’word(result,2)||lf||’Not ←↩

full: ’word(result,1)
dopus request ’"’text’" OK’
dopus back
exit

1.10 Magellan II ARexx Tutorial: Dopus Set

New for Magellan II

To complement the dopus query command there is the dopus set
command. This command primarily allows you to change aspects of the
Opus GUI, that is, the Desktop and listers.

DOpusARexxTute 12 / 128

It allows you to customise your interface, and as such is used extensively
by the Opus Themes system. If you have any themes installed, then the
D5Themes: directory will contain a number of files labelled ????.theme .

Each one of these files is actually an ARexx script that contains a number
of dopus set commands that change the GUI in some way.

For example; fonts, palette, pens, backgrounds, sounds.

/* DopusBackground.dopus5 */
options results
address ’DOPUS.1’
address command ’Copy TuteRexx/Extras/2.iff RAM:’
dopus front
dopus set background ’RAM:2.iff’ desktop tile custom /* Set the new ←↩

background */
dopus refresh background custom /* Refresh the display ←↩

*/
address command wait 10 /* Wait 10 seconds */
dopus refresh background /* Refresh the display ←↩

*/
dopus back
address command ’Delete RAM:2.iff QUIET FORCE’
exit

/* DOpusSound.dopus5 */
options results
address ’DOPUS.1’
dopus front
address command ’Copy TuteRexx/Warning RAM: QUIET’
dopus query sound "’Open Lister’" /* What’s the old sound? */
oldsound = result /* Save it */
dopus set sound "’Open Lister’" "’RAM:warning’" 64 /* Set the new sound */
lister new /* Open a lister */
handle = result /* Store it’s handle */
address command wait 3 /* Wait 3 seconds */
lister close handle /* Close the lister */
dopus set sound "’Open Lister’" oldsound 64 /* Restore the old sound */
call delete(’RAM:Warning’)
exit

Below is the theme file for Trevor Morris’ excellent Aliens theme, as you
see, it consists of mostly dopus set commands.

/* D5THEME

Alien.theme

Directory Opus 5.7 Theme File

*/

parse arg dopus_port apply_flags
if dopus_port=’’ then

dopus_port=’DOPUS.1’
address value dopus_port

if apply_flags=’’ then
apply_flags=’PFBS’

DOpusARexxTute 13 / 128

else
apply_flags=upper(apply_flags)

options results
options failat 21

/* Set background pictures */
if index(apply_flags , "B") ~= 0 then do

dopus set background on
dopus set background "’D5THEMES:Alien/Screens/Alien1.iff’" desktop tile ←↩

precision icon border off
dopus set background "’D5THEMES:Alien/Screens/Marble.iff’" lister tile ←↩

precision image border off
dopus set background "’D5THEMES:Alien/Screens/WhiteMarble.iff’" req tile ←↩

precision exact border off
end

/* Set sound events */
if index(apply_flags , "S") ~= 0 then do

dopus set sound "’Bad disk inserted’" "’D5THEMES:Alien/Sounds/ ←↩
Alien_Default.snd’" 64

dopus set sound "’Close buttons’" "’D5THEMES:Alien/Sounds/Alien_Open.snd ←↩
’" 64

dopus set sound "’Close group’" "’D5THEMES:Alien/Sounds/Alien_Open.snd’" ←↩
64

dopus set sound "’Close lister’" "’D5THEMES:Alien/Sounds/Alien_Open.snd ←↩
’" 64

dopus set sound "’Disk inserted’" "’D5THEMES:Alien/Sounds/Alien_Twinkle. ←↩
snd’" 64

dopus set sound "’Disk removed’" "’D5THEMES:Alien/Sounds/Alien_Drama.snd ←↩
’" 64

dopus set sound "’FTP close connection’" "’D5THEMES:Alien/Sounds/ ←↩
Alien_Beep.snd’" 64

dopus set sound "’FTP connect fail’" "’D5THEMES:Alien/Sounds/ ←↩
Alien_Suspence.snd’" 64

dopus set sound "’FTP connect success’" "’D5THEMES:Alien/Sounds/ ←↩
Alien_Ring.snd’" 64

dopus set sound "’FTP copy fail’" "’D5THEMES:Alien/Sounds/ ←↩
Alien_Exclamation.snd’" 64

dopus set sound "’FTP copy success’" "’D5THEMES:Alien/Sounds/ ←↩
Alien_Elevator.snd’" 64

dopus set sound "’FTP error’" "’D5THEMES:Alien/Sounds/Alien_Error.snd’" ←↩
64

dopus set sound "’Hide’" "’D5THEMES:Alien/Sounds/Alien_Hiss.snd’" 64
dopus set sound "’Open buttons’" "’D5THEMES:Alien/Sounds/Alien_Restore. ←↩

snd’" 64
dopus set sound "’Open group’" "’D5THEMES:Alien/Sounds/Alien_Restore.snd ←↩

’" 64
dopus set sound "’Open lister’" "’D5THEMES:Alien/Sounds/Alien_Restore. ←↩

snd’" 64
dopus set sound "’Reveal’" "’D5THEMES:Alien/Sounds/Alien_Warning.snd’" ←↩

64
dopus set sound "’Shutdown’" "’D5THEMES:Alien/Sounds/Alien_ShutDown.snd ←↩

’" 64
dopus set sound "’Startup’" "’D5THEMES:Alien/Sounds/Alien_Startup.snd’" ←↩

64
end

DOpusARexxTute 14 / 128

/* Set fonts */
if index(apply_flags , "F") ~= 0 then do

dopus set font screen "’XHelvetica.font’" 11
dopus set font listers "’XEN.font’" 8
dopus set font iconsd "’XEN.font’" 8
dopus set font iconsw "’RSansSerif.font’" 8

end

/* Set colour settings*/
if index(apply_flags , "P") ~= 0 then do

dopus set pens icons 8 1 3 1 12 2
dopus set pens files 1 0
dopus set pens dirs 10 0
dopus set pens selfiles 1 8
dopus set pens seldirs 1 9
dopus set pens devices 10 0
dopus set pens assigns 1 0
dopus set pens source 1 11
dopus set pens dest 1 12
dopus set pens gauge 11 13
dopus set pens user 5
dopus set palette 0x969696 0x000000 0xFFFFFF 0x3C65A2 0x7000C0 0x804000 0 ←↩

x07000C 0x01058C 0xB4E494 0xC8FC00 0x004C94 0xFCFCD4 0xD8D8D8 0x183454 ←↩
0xE8E8E8 0x505050

end

/* Refresh Opus */
dopus refresh all

1.11 Magellan II ARexx Tutorial: Dopus Getdesktop

New for Magellan II

Supposing in your ARexx script you wanted to add a file/dir to the Desktop:

Where do you copy the file to?
Do you copy or move it?
How do you tell Opus to add it to the Desktop display?

Supposing you wanted to Drag’n’Drop a file from the Desktop to a custom
handler:

How can you be sure the source path is the Opus Desktop directory?

This is where these three commands, dopus getdesktop ,
dopus checkdesktop and dopus matchdesktop are useful.

When you copy or move a file to the Desktop, they are copied or moved to
this directory. You can check this out for yourself very easily, open two
listers, one with a path of S:, the other with DOpus5:Desktop. Now copy a
file from S: to DOpus5:Desktop, after a few seconds you will see the file
appear on the Desktop, usually with whatever default icon for that type of
file.

If you then use the icons popup menu to delete the file, and rescan the

DOpusARexxTute 15 / 128

DOpus5:Desktop lister, you will see that the file has gone.

So by copying things to that directory you can add them to the Desktop,
but how do you find out the directory that the Desktop uses?

dopus getdesktop returns the path of the Opus Desktop directory as
defined in the Environment - Desktop settings, usually the default is
DOpus5:Desktop.

NOTE: The path returned will be the absolute path, for example,
HD0:Opus5/Desktop.

The
DOPUSRC
variable will contain a value that will indicate what the

default action is for files dropped onto the Desktop. See the example for
the values available.

Example:

/* DopusGetdesktop.dopus5 */
options results
address ’DOPUS.1’
dopus front
dopus getdesktop
text = ’Current Desktop path is: ’result
dopus request ’"’text’" OK’
text = ’Popup disabled’ /* dopusrc = 0 */
if dopusrc = 1 then text = ’No default action’
if dopusrc = 2 then text = ’Create left-out’
if dopusrc = 3 then text = ’Move to Desktop’
if dopusrc = 4 then text = ’Copy to Desktop’
dopus request ’"’text’" OK’
dopus back
exit

If you did the experiment above you noticed that Opus automatically added
the program to the Desktop after a few seconds. This is because Opus uses
file notification on the Desktop directory, when a file gets copied there,
Opus is notified, it rescans the directory and adds any not already on the
Desktop.

However if you copy a directory to the Desktop directory, Opus won’t add
it to the Desktop because it doesn’t recieve notification, this is where the
dopus checkdesktop command is useful.
You give it a path to check, if it matches the one in the environment

settings, it forces Opus to go and check the Desktop directory for any new
items to add to the Desktop.

Example:

/* DopusCheckdesktop.dopus5 */
options results
address ’DOPUS.1’
dopus getdesktop
deskpath = result
address command ’MakeDir ’deskpath’T’
dopus checkdesktop deskpath

DOpusARexxTute 16 / 128

text = ’There should be an icon for ’’T’’ on the Desktop’
dopus request ’"’text’" OK’
address command ’Delete ’deskpath’T FORCE QUIET’
dopus checkdesktop deskpath
exit

Supposing you had a custom handler for a lister and you dragged a file
from the Desktop to your lister, Opus would give you the full file and path,
for example, HD0:Desktop/some.file

After seperating the path from the file, how could you check that the path
given was the Desktop path that Opus uses?

This is what the dopus matchdesktop command is for, you can give it a
path and it will check it against the path specified for the Desktop in the
environment settings.

Example:

/* DopusMatchdesktop.dopus5 */
options results
address ’DOPUS.1’
dopus front
dopus matchdesktop ’SYS:Prefs’
if result = 1 then

text = ’Your Desktop path is SYS:Prefs, very strange :-/’
else

text = ’Your Desktop path isn’’t SYS:Prefs, good :)’
dopus request ’"’text’" OK’
dopus back
exit

1.12 Magellan II ARexx Tutorial: Dopus Desktoppopup

New for Magellan II

Supposing in your nice, new script you want to give the user a choice when
they drop a file on the Desktop of either; creating a left-out or either
copying or moving to the Desktop.

The dopus desktoppopup command will allow you to popup the Desktop menu,
letting you choose any one of these, the value of the choice will be returned
in

RC
.

The options can be limited by adding a flag to the command, so you could,
for example, limit the options to just ’Create left-out’. The value of the
flags can be added together to disable more than one options.

Flag Option Result Code
2 Create Left-out 1
4 Copy to Desktop 2
8 Move to Desktop 3

DOpusARexxTute 17 / 128

So to disable the Copy and Move to Desktop options, you would specify a
flag of 12.

Example:

/* DopusDesktoppopup.dopus5 */
options results
address ’DOPUS.1’
dopus front
text = ’The mouse will need to be over the’||lf||,

’Desktop, not a lister or button bank.’
dopus request ’"’text’" OK’
address command wait 1
dopus desktoppopup 4
text = ’Nothing chosen’
if rc = 1 then text = ’Create Left-out’
if rc = 3 the ntext = ’Move to Desktop’
dopus request ’"’text’" OK’
dopus back
exit

1.13 Version and Errors

This section deals with just finding the version information for ←↩
Opus and

how to get more information from an Opus ARexx error code.

The two commands that deal with this are:-

dopus version
Every Opus has a version and revision number, as per the normal ←↩

Style Guide
recommendations. This is not the number that’s normally associated with the
release, for example: Directory Opus Magellan had a release of 5.661, (final
release after patches were applied), the actual version/revision was 5.1500.

Generally with every release there are either more or changes to existing
ARexx commands available. Obtaining the version/revision information helps
you in tailoring your scripts to a particular release of Opus.

dopus error
Generally when an ARexx script terminates, the variable

RC
, (Result

Code), will get set to a value. A value of 0 means that there was no
problems and the script terminated normally, anything other than 0 means
there was a problem. Obviously a number isn’t going to impart much
information, that’s where the dopus error command is useful, it will
provide a short message telling you what’s wrong.

DOpusARexxTute 18 / 128

1.14 Magellan II ARexx Tutorial: DOpus Version

ArcDir
The dopus version command can be used to check that your ←↩

script will only
run on specific versions of Opus.

More ARexx functions have been added since Opus v5 was first created, if
you create a script that uses commands that are in Opus Magellan but not
in Opus v5.5, you can use dopus version to ensure that the script will
only run on Opus Magellan or later.

The result is returned as two numbers representing the version and the
revision, separated by a space.

Example:

/* DOpusVersion.dopus5 */
options results
address ’DOPUS.1’
dopus version /* Ask for version information */
text = "Your DOpus version is: "result /* Format result into string */
dopus request ’"’text’" OK’ /* Output to a requester */
dopus version
newopus = result ~= ’RESULT’ & translate(result,’.’,’ ’) ~< 5.1215
if newopus then

text = ’You can use the ’’lister request’’ command.’
else

text = ’You can’’t use the ’’lister request’’ command.’
dopus request ’"’text’" OK’
exit

In the example above, we reduced the version information to a boolean
value, (0 or 1), by the line:

newopus = result ~= ’RESULT’ & translate(result,’.’,’ ’) ~< 5.1215

We can break it down to make it a bit more understandable this way:

result ~= ’RESULT’ <- This will give true or false, (1 or 0).

So, if the command worked, (dopus version), then
RESULT
won’t equal

’RESULT’, so this is true, (1).

translate(result,’.’,’ ’) <- Change v rrrr to v.rrrr, (eg. 5 1215 -> 5.1215).

~< 5.1215 <- Then compare the result to 5.1215.

If the version/revision information was not less than, (that is, greater
than, or equal to), 5.1215 then this part will also be true, (1).

The final part is just the boolean addition of the two results of these
two seperate expressions. If both are true, then you have the following:

DOpusARexxTute 19 / 128

newopus = 1 & 1

If you had an early version of Opus then:

newopus = 1 & 0

It’s just an easier way of making comparisons later in the script, you
won’t need to do:

if versioninfo = ’5 1215’ then....

or similar.

1.15 Magellan II ARexx Tutorial: DOpus Error

The next command, dopus error , is used to provide more ←↩
meaningful error

messages, rather than just a code like 1, 5, 10, etc.

If you have created a script that keeps failing because you have provided
an incorrect handle to a

lister query
command, all that is reported to

you is the error code: 10.

You could have a short script in your DOpus5:ARexx/ directory like the
following:

/* DOpusError.dopus5 */
address ’DOPUS.1’
dopus getstring ’"Please enter error code:" 2 "" OK|Cancel’ /* Ask for code */
if dopusrc = 0 then exit /* If Cancel then exit */
ec = result /* Save error code entered */
dopus error ec /* Pass error code to DOpus for interpretation */
text = "Error code "ec": "result /* Format result into a string */
dopus request ’"’text’" OK’ /* Display error text in requester */
exit

Then when you get an error code running a Opus script, you could execute
the above script:

’rx DOpus5:ARexx/DOpusError.dopus5’

It would prompt you for the error code, then tell you what it meant.

The command could also be used to inform users of your scripts that
there was a problem, this could then be refered back to you, providing
you with important fault finding information.

NOTE: This is only true for Opus ARexx error codes, if you give
it a normal ARexx error code then you might end up with
the completely wrong answer.

You can see a list of valid Opus ARexx error codes @" here " link gen_errors}.

DOpusARexxTute 20 / 128

1.16 Getting input from the user

Opus provides basically two ways of getting direct input from ←↩
the user,

each has two variations:

dopus request
This presents the user with a window with some text and a choice ←↩

of one or
more buttons to select. These are similar to the normal System requesters.
Requesters will appear in the center of the Opus screen.

dopus getstring
This displays a string gadget in which the user can type some ←↩

text and also
have a choice of one or more buttons. The string gadget will appear in the
center of the Opus screen.

The two commands below provide the same functions as the two above except
that the requester/string gadget will appear centered over the nominated
lister.

The two main advantages of this is that:

- it provides an immediate indication of which lister the input is going to
be used for.

- you don’t need to keep moving the mouse to the center of the screen if you
are using the lister that’s running the script.

The disadvantage is, of course, you need a lister open :)

lister request

lister getstring

1.17 Magellan II ARexx Tutorial: DOpus Request

ArcDir
The dopus request . This command is used to provide ←↩

interaction
with the user, similiar to the normal System requesters like ’Please insert
volume xxxx’, where you can click on one of a number of buttons, eg. OK or
Cancel.

The dopus request command will open it’s window in the centre of the
Opus screen, as will the following command dopus getstring .

DOpusARexxTute 21 / 128

The value of the button you chose will be returned in the ARexx variable

RC
.

An example:

/* DOpusRequest.dopus5 */
options results
lf = ’0a’x
address ’DOPUS.1’
dopus request ’"Please select a button below:" Replace|Skip|Rename|Abort’
if rc = 1 then button = ’Replace’
if rc = 2 then button = ’Skip’
if rc = 3 then button = Rename’
if rc = 0 then button = ’Abort’
text = ’You chose button: ’button||lf||’The value of the button you chose was: ’rc
dopus request ’"’text’" OK’
exit

If you chose the button ’Abort’ in the example, you will note that the
value returned in the ARexx variable

RC
was 0. This is because the last

button, (right-most), of the requester is designated the Cancel button.
Values returned in the above example, according to button order, will then

be 1, 2, 3, and 0.

1.18 Magellan II ARexx Tutorial: DOpus Getstring

ArcDir
An extension to ’dopus request’, is the dopus getstring command, ←↩

which
allows the user to input a string instead of just choosing a button.

The following example asks you for your name, only allows you to input 15
characters maximum, and displays a default name of ’Jon Potter’, which you
can use backspace to erase and then input your own.

If you then click on the ’Okay’ button, any text you typed in will be in
the standard ARexx variable

RESULT
.

The value of the button you used will be returned in the special Opus
variable

DOPUSRC
.

/* DOpusGetstring.dopus5 */
options results
lf = ’0a’x
address ’DOPUS.1’
dopus getstring ’"Please enter your name" 15 "Jon Potter" Okay|Cancel’
if dopusrc = -1 then what = ’pressed Enter’

DOpusARexxTute 22 / 128

if dopusrc = 1 then what = ’chose Okay’
if dopusrc = 0 then what = ’chose Cancel’
text = ’You ’what||lf||’The value of DOPUSRC was: ’dopusrc
dopus request ’"’text’" OK’
text = "Your name is: "result
dopus request ’"’text’" OK’
exit

If you clicked on the ’Cancel’ button, the
RESULT
variable will be cleared

of any string and
DOPUSRC
will contain the value 0.

If you clicked the ’Okay’ button then
RESULT
will contain any text, (or

none), that was in the string gadget, and
DOPUSRC
will have the value of 1.

If you hit the Return/Enter key to enter your name, then
RESULT
will

contain any text typed in, and
DOPUSRC
variable will be -1.

1.19 Magellan II ARexx Tutorial: Lister Request

ArcDir
The lister request command provides the same capability

as the dopus request command, the difference being that
the requester will open over the specified lister.

Example:

/* ListerRequest.dopus5 */
options results
address ’DOPUS.1’
lister new "SYS:"
handle = result
lister wait handle
lister request handle ’"I am positioned over a lister" OK’
lister close handle
exit

1.20 Magellan II ARexx Tutorial: Lister Getstring

DOpusARexxTute 23 / 128

The lister getstring command is identical in function to
the dopus getstring command, the only difference being in
that the string requester will open over the specified lister.

Example:

/* ListerGetstring.dopus5 */
options results
address ’DOPUS.1’
lister new "SYS:"
handle = result
lister wait handle
lister getstring handle ’"How old are you?" 2 "" OK|Cancel’
lister close handle
exit

Any button selected from the requester will have it’s value returned in the

DOPUSRC
result variable, please refer to
dopus getstring
to see

what possible values it can hold.

1.21 Opening and closing listers

Listers, the interface through which you manipulate files in ←↩
Opus v5, are

the heart of the system, so it makes sense that we should know how to open
and close the things :)

Whenever you successfully open a lister, a handle for that particular
lister will be returned in the

RESULT
variable. This handle will be required

if you need to do any further operations on that lister, for example, close
it.

lister new
This is the only ARexx command that can open a lister, and it ←↩

will let you
do it in any mode, position, path, with any toolbar, iconified, invisible and
standing on your head, (see the all new

dopus user position
command).

lister close
This command can close a single lister or it can close them all.

lister iconify

DOpusARexxTute 24 / 128

If you want to make a lot of space available on screen fast ←↩
without closing

any listers, lister iconify is the command for you.

lister read
This lets you read another path into the lister.

lister copy
The lister copy command lets you quickly copy the contents of ←↩

one lister
to another.

lister wait
Some lister operations can take a while, for example, reading in ←↩

a
directory with hundreds of files. This command will force the script to wait
until the lister is again ready to accept commands, ensuring that none are
lost.

1.22 Magellan II ARexx Tutorial: Lister New

ArcDir
The first lister command we’ll look at is lister new . This ←↩

command
let’s you open a new lister, allowing you to specify it’s position, size,
initial path, toolbar, status, mode, etc.

The default position for a lister to open is under the mouse, and if no
path is specified then the lister will be empty.

An important thing to note is that any PATH you specify must occur
at the end of the command line.

In the following lister new examples, the listers will close after
5 seconds.

Examples:

/* DOpus lister new */
options results
address ’DOPUS.1’
lister new mode name /* open name mode lister, no initial path */
lister new mode icon SYS: /* open icon mode lister, with path of SYS: */
lister new mode icon action SYS: /* open in iconaction mode, with path of SYS: ←↩

*/
lister new mode showall RAM: /* open icon mode lister showing all files */
lister new 1/1/200/300 /* open a lister in the top left corner */
lister new toolbar ’TuteRexx/ListerNew.tb’
lister new iconify RAM: /* opens a lister, iconified */

exit

DOpusARexxTute 25 / 128

Click on the buttons above to see the appropriate lister open.

Any lister you open, will have a handle. This is a number that points
to that specific lister out of however many you have open. You will need
the handle for any further operations you want to perform on that lister.

This handle is returned in
RESULT
when you open a lister in ARexx.

Example:

/* ListerHandle.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new
text = "Lister handle is: "result
dopus request ’"’text’" OK’
lister close handle
dopus back
exit

1.23 Magellan II ARexx Tutorial: Lister Close

The opposite of
lister new
is the lister close command, which allows

you to close a single lister, or all listers.

To close a single lister, you need to know it’s handle.

An example:

/* ListerClose.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new /* Open a new lister */
handle = result /* Store it’s handle */
address command wait 2 /* Wait 2 seconds */
lister close handle /* Close the lister */
exit

Or, alternatively, you can close all listers by substituting the word ALL
instead of a handle.

/* ListerClose2.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new
"lister new 50/50/200/200"
"lister new 100/100/200/200"

DOpusARexxTute 26 / 128

"lister new 200/200/200/200"
dopus request ’"Now to close them all" OK’
lister close all
dopus back
exit

1.24 Magellan II ARexx Tutorial: Lister Iconify

As it suggests, the lister iconify command allows you to ’iconify’,
reduce it from a window to an icon, a lister or all listers. This is useful
for making other things more visible on the Desktop without actually closing
the lister.

Example:

/* ListerIconify.dopus5 */
options results
lf = ’0a’x
address ’DOPUS.1’
dopus front
lister new mode icon ’SYS:’
handle = result
text = ’When you close this requester’||lf||,

’the lister will be iconified.’
dopus request ’"’text’" OK’
lister iconify handle on /* Iconify the lister */
text = ’The lister is now iconified.’||lf||,

’It will be de-iconified when’||lf||,
’you close this requester.’

dopus request ’"text’" OK’
lister iconify handle off /* Uniconify */
address command wait 2
lister close handle
dopus back
exit

All listers can be iconified by replacing the handle with the word ALL.

1.25 Magellan II ARexx Tutorial: Lister Read

ArcDir
The lister read command causes the lister to read a different ←↩

path into
the display. When you read a new path into the lister, the old path will be
returned in

RESULT
.

Example:

/* ListerRead.dopus5 */

DOpusARexxTute 27 / 128

options results
address ’DOPUS.1’
dopus front
lister new mode name "RAM:"
handle = result
lister wait handle
lister request handle ’"We will now read ’’SYS:’’ into this lister" OK’
lister read handle "SYS:" /* Read the new path */
oldpath = result /* Save the old path */
text = ’The old path was: ’oldpath
lister request handle ’"’text’" OK’
address command wait 2
lister close handle
dopus back
exit

1.26 Magellan II ARexx Tutorial: Lister Copy

The lister copy command lets you quickly copy the display ←↩
contents,

(not the actual files/directories), from one lister to another.

Example:

/* ListerCopy.dopus5 */
options results
lf = 0a’x
address ’DOPUS.1’
dopus front
"lister new 1/1/100/100 mode name ’SYS:’"
handle1 = result
"lister new 100/100/100/100 mode name ’RAM:’"
handle2 = result
lister wait handle2
dopus request ’"The contents will be copied from one to the other’||lf||,

’when you close this requester." OK’
lister copy handle1 handle2 /* Copy the contents */
address command wait 4
lister close handle1
lister close handle2
dopus back
exit

This command can be used to provide a ’Window Copy’ function like in the
old Directory Opus 4, in fact someone has done it for you, look

here
.

1.27 Magellan II ARexx Tutorial: Lister Wait

DOpusARexxTute 28 / 128

ArcDir
The lister wait command instructs DOpus to wait until the

lister is idle before continuing with the ARexx script.

This is sometimes necessary because some of the lister operations can take
a short while to complete and any commands sent to the lister while it isn’t
idle will be lost.

The command will wait for two seconds if the lister is idle, if you don’t
want this delay, then you can add the QUICK keyword which will cause the
command to return immediately if the lister is idle.

Example:

/* ListerWait.dopus5 */
lf = ’0a’x
options results
address ’DOPUS.1’
dopus front
lister new "DOpus5:Images/"
handle = result
text = ’We didn’’t wait, so the requester’||lf||,

’is not over the center of the’||lf||,
’lister.’

lister request handle ’"’text’" OK’
address command wait 3
lister close handle
address command wait 1
lister new "DOpus5:Images/"
handle = result
lister wait handle
text = ’We waited this time, so the’||lf||,

’requester is over the center’||lf||,
’of the lister.’

lister request handle ’"’text’" OK’
address command wait 3
lister close handle
dopus back
exit

1.28 Providing some feedback

If you have written a script that provides a useful purpose, it’ ←↩
s often

nice to have some indication given to the user that something is happening.
This can be either by audible or visual means.

Audible feedback in ARexx with Opus is only possible by using the
command

command to call the internal audio commands.

Visual feedback through Opus can be in the form of:

DOpusARexxTute 29 / 128

- changing the state of the lister, (for example, SRCE -> OFF)
- changing the lister header or title.

See
lister set
for examples of the two above.

- changing the Desktop somehow, (see
dopus set
for this).

- progress bars.
- opening a viewer.

These two are the one’s we will deal with here since Opus provides commands
to directly implement them.

dopus read
This command allows you to call the dopus viewer , a text ←↩

reader that can
be used for displaying files in ASCII, ANSI or HEX. It could be used for the
displaying of an intermediate result/file or the final output.

dopus progress
dopus progress will open a progress bar in the middle of the ←↩

Opus screen.

lister progress

lister newprogress
These two commands will both open progress bars over a nominated ←↩

lister,
the difference being that the lister newprogress version allows you have
more information in the progress bar window.

1.29 Magellan II ARexx Tutorial: Dopus Read

The dopus read provides ARexx control of the internal
Opus viewer.

You can use it to view any type of file on your system, using the normal
reader menus to switch between modes, call an editor, etc.

When you open a viewer from ARexx, a handle will be returned in the
ARexx

RESULT
variable, much the same as for opening listers. Having a handle

will allow you to load new files into an already open viewer, or close an
open viewer.

Specifying the delete keyword will cause the file being viewed

DOpusARexxTute 30 / 128

to be deleted when you close the reader. This makes it useful for viewing
temporary files, or intermediate results.

Example:

/* DopusRead.dopus5 */
options results
address ’DOPUS.1’
address command ’Copy TuteRexx/DOpusRead.dopus5 RAM: QUIET’
"dopus read delete pos 50/50/200/100 RAM:DOpusRead.dopus5"
text = ’The reader’’s handle is: ’result
dopus request ’"’text’" OK’
text = ’The file ’’RAM:DOpusRead.dopus5’’ will be deleted when you close the ←↩

viewer.’
dopus request ’"’text’" OK’
exit

NOTE: Because we have included a position for the viewer to open in, (pos
50/50/200/100), it will be necessary to put the whole command within
quotes so ARexx doesn’t interpret 50/50/200/100 as a mathematical
expression.

In the following example, we’ll open the viewer in hex mode and then close
it using it’s handle.

Example:

/* DopusRead2.dopus5 */
options results
address ’DOPUS.1’
dopus read hex ’C:LoadWB’
handle = result
text = ’The reader’’s handle is: ’handle
dopus request ’"’text’" OK’
address command wait 3
dopus read handle quit
exit

1.30 Magellan II ARexx Tutorial: Dopus Progress

Similar to the lister progress and lister newprogress ←↩
commands, the

dopus progress command allows you to use a progress bar without having to
open a lister.

Useful for indicating to a user that something is happening. As with the

lister new
command, this command returns a handle in the
RESULT
variable

so that you can control the output of the progress bar, as well as close it
or check the abort button. You need to save this handle if you want to do
anything with the progress bar.

DOpusARexxTute 31 / 128

Example:

/* DopusProgress.dopus5 */
options results
address ’DOPUS.1’
dopus progress name info info2 info3 bar abort
handle = result
dopus progress handle title "DOpus Progress Test"
dopus progress handle info "Counting from 10 to 0"
dopus progress handle info2 "Press abort to end"
do i = 10 to 0 by -1

dopus progress handle bar 10 i
dopus progress handle info3 i" to go."
address command wait 1
dopus progress handle abort
if result = 1 then leave

end
dopus progress handle off
exit

1.31 Magellan II ARexx Tutorial: Lister Progress

The lister progress command was the first implementation of a progress
display ARexx command for listers.

As with the lister newprogress command, this is actually a sub-command of
the lister set command.

If you don’t need the extra information space and options that the
lister newprogress command can supply, then this is a simpler command to

set up and use.

When you have finished using the progress bar you can turn it off using the
lister clear command.

Example:

/* ListerProgress.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new mode name "RAM:"
handle = result
lister wait handle
lister set handle progress 100 "Lister Progress Demo"
lister clear handle abort
do i = 100 to 0 by -5

lister set handle progress name i"% left"
lister set handle progress count i
lister query handle abort
if result = 1 then leave
address command wait 1

end
lister clear handle progress
address command wait 2

DOpusARexxTute 32 / 128

lister close handle
dopus back
exit

1.32 Magellan II ARexx Tutorial: Lister NewProgress

This command is really lister set newprogress , it is another
sub-command of the

lister set
command but was worth mentioning by itself.

This command displays a progress bar over a lister that you can update as
an indication to the script users that something is happening. It is similar
to the progress bar that appears when you Copy, Delete, Move, etc files from
one lister to another.

Example:

/* ListerNewprogress.dopus5 */
options results
address ’DOPUS.1’
dopus front
plural. = ’s’
plural.1 = ’’
lister new mode name ’SYS:’
handle = result
lister set handle newprogress name info info2 bar abort
lister set handle newprogress title ’Newprogress Example’
lister set handle newprogress info2 ’Hit abort to end.’
do i = 1 to 10

text = i’ second’||plural.i
lister set handle newprogress name ’"’text’"’
text = (10 - i)’ second’plural.(10 - i)’ to go.’
lister set handle newprogress info ’"’text’"’
lister set handle newprogress bar 10 i
lister query abort
if result then leave
address command wait 1

end
lister clear handle progress
address command wait 2
lister close handle
dopus back
exit

The lister newprogress command provides more information than the
lister progress command, so it is proportionly more work to set up.

1.33 Magellan II ARexx Tutorial: Finding and Setting Lister Attributes

DOpusARexxTute 33 / 128

Well, your lister is sitting there on the Desktop staring at you ←↩
. You’d

like to find out all sorts of intimate information about it, but how?

lister query
The lister query command will let you find out all there is to ←↩

know about
your lister and it’s contents, as long as you know the handle.

Things like; it’s path, the number of entries, the number of files, the
fields currently displayed, the sorting method, etc are yours for the asking.

What’s that? You don’t like the way your lister currently looks? Have no
fear, we even supply a command to let you change it.

lister set
lister set will let you change things such as; the current ←↩

path, the sort
direction, entry seperation method, titlebar, header, state, mode, etc all at
the flick of a wrist.

There really is only two commands that let you find and set lister
attributes, lister query and lister set , but I thought I’d describe a
couple of others just for something to do.

Your lister opened in the wrong spot or perhaps it’s obscuring something on
the Desktop that you’d like to see. Maybe you’d just like to have it scale
itself relative to the screen size.

lister set position
And the one below will let you make a lister visible or ←↩

invisible, the
possible use of this is you can set up your lister with the contents,
toolbar, mode, etc without the user seeing all this happening, and then just
make it visible...magic!

lister set visible

1.34 Magellan II ARexx Tutorial: Lister Query

ArcDir
(There are many more than just this example in ArcDir.)

The lister query command allows you to retrieve information
on either the lister settings or entries in the lister.

You can retrieve information such as the sorting method, (name, date, etc),
the path, (RAM:, etc), total number of entries, (selected or not), just
selected files or directories, specific entry information, and much more.

DOpusARexxTute 34 / 128

The results of the lister query command will generally be returned in the

RESULT
variable.

For example:

/* ListerQuery.dopus5 */
options results
address ’DOPUS.1’
lister new mode name "S:"
handle = result
call setclip(’Lister.test’,handle)
exit

Run the example and then click on the buttons below to obtain information
on the new lister.

lister query handle numentries
lister query handle numfiles
lister query handle separate
lister query handle flags
lister query handle path
lister query handle mode
lister query handle display
lister query handle busy

Click on this button to close the lister.

lister query can also be used to find the handle for the current Active, ←↩
Source or

Destination lister. This is analogous to sending the {Ql} and {Qd} parameter
to the script, except with the ARexx version you can get the handles of all
listers.

Once you’ve found the Active lister, you can determine whether it is a
Source or Destination by comparing it to the list of handles retrieved for
all Source or Destination listers.

Example:

/* Lister.dopus5 */
lf = ’0a’x
options results
address ’DOPUS.1’
lister close all
’lister new 1/1/100/100’
handle1 = result
lister wait handle1
lister set handle1 source lock
’lister new 1/110/100/100’
handle2 = result
lister wait handle2
lister set handle2 source lock
’lister new 1/220/100/100’
handle3 = result
lister wait handle3
lister set handle3 dest lock

DOpusARexxTute 35 / 128

’lister new 140/1/100/100’
handle4 = result
lister wait handle4
lister set handle4 dest lock
’lister new 140/110/100/100’
handle5 = result
lister wait handle5
lister set handle5 off
’lister new 140/220/100/100’
handle6 = result
lister wait handle6
lister set handle6 busy on

lister query all
text = ’Handles of All non-busy listers,’||lf||,

’there should be five of them:’||lf||,
result

dopus request ’"’text’" OK’

lister query source var dummy
text = ’Handles of all Source listers,’||lf||,

’there should be two of them:’||lf||,
dummy

dopus request ’"’text’" OK’

lister query dest var dummy
text = ’Handles of all Dest listers,’||lf||,

’there should be two of them:’||lf||,
dummy

dopus request ’"’text’" OK’

text = ’You’’ll have five seconds to make a non-busy’||lf||,
’lister active, just click on it’’s titlebar,’||lf||,
’then I’’ll tell you it’’s handle and state.’

dopus request ’"’text’" OK’

address command wait 5
lister query active
if result = ’RESULT’ | result = 0 then
dopus request ’"You didn’’t activate one!" OK’

else do
handle = result
text = ’The Active lister’’s handle is: ’handle
lister query source
if pos(handle,result) > 0 then

text = text||lf||’It is a SOURCE lister.’
else do

lister query dest
if pos(handle,result) > 0 then

text = text||lf||’It is a DESTINATION lister.’
else

text = text||lf||’It’’s state is OFF.’
end

dopus request ’"’text’" OK’
end

lister set handle6 busy off

DOpusARexxTute 36 / 128

lister close all
exit

Edmund’s
SwapListers

, Leo’s
WinCopy
and
SwapWin
and the
CDO.dopus5

provide some real-life examples of how this can be used.

There is much more information that can be obtained through the lister query ,
please refer to the DOpusM2_ARexx.guide for the other options.

1.35 Magellan II ARexx Tutorial: Lister Set

ArcDir
(There are many more than just this example in ArcDir.)

You can set various lister attributes, (sorting, title, etc), file
displays, (eg. hide icon files, #?.info), with the lister set command.

There are quite a lot of parameters for this command, a full description
can be found in the DOpusM2_ARexx.guide.

Versions of lister set that in some way change the lister display require
a lister refresh statement issued before the changes become visible.

If the command only changes the entry display of the lister, then only
a ’lister refresh <handle>’ is required.

If it changes the titlebar, status bar, etc, then you need to issue a
’lister refresh <handle> full’.

Some examples of setting attributes are as follows:

/* ListerSet.dopus5 */
options results
address ’DOPUS.1’
lister new mode name "SYS:"
handle = result /* Store the handle */
call setclip(’Lister.test’,handle)
exit

Run the above example, then click on one of the buttons below to change
various options of the lister.

lister set handle dest
lister set handle source
lister set handle busy on
lister set handle busy off
lister set handle header ’This is the header’
lister set handle title ’This is the title’

DOpusARexxTute 37 / 128

lister set handle mode icon
lister set handle mode icon action
lister set handle mode name
lister set handle flags reverse
lister set handle separate filesfirst
lister set handle toolbar ’RAM:Demo.tb’

Click on this button to close the lister.

1.36 Magellan II ARexx Tutorial: Lister Set Position

The lister set position command allows you to move listers ←↩
around the

screen, this could be useful for uncovering parts of the display or, as you
can see

here
, Edmund has used it to emulate the Opus v4 SwapWin

command.

Example:

/* ListerPosition.dopus5 */
options results
address ’DOPUS.1’
dopus front
dopus screen
width = word(result,4)
"lister new 0/50/200/200"
handle = result
text = ’What’’s over there ->’
lister request handle ’"’text’" OK’
do forever

lister query handle position
pos = result
parse var pos x’/’y’/’w’/’h
newx = x + 5
if newx + w > width then do

text = ’Looks like the end of the screen!’
lister request handle ’"’text’" OK’
leave
end

x = newx
lister set handle position x’/’y’/’w’/’h

end
address command wait 2
lister close handle
exit

I’m sure someone can think of another use for this command :)

DOpusARexxTute 38 / 128

1.37 Magellan II ARexx Tutorial: Lister Visible

You might wonder why you want to make a lister invisible, here’s a couple
of possible reasons:

a) You want to clear the Desktop of windows without closing listers.
b) You can set up the lister with a new toolbar and entries and then make it

visible, rather than doing it in front of the user.

The lister set visible command allows you to make a lister visible or
not.

Example:

/* ListerVisible.dopus5 */
options results
address ’DOPUS.1’
dopus front
say pragma(’d’)
address command ’copy TuteRexx/extras/Surprise.info RAM:’
address command ’copy TuteRexx/extras/Example.tb RAM:’
lister new mode name invisible ’SYS:’
handle = result
dopus request ’"Ready?" Yep’
lister set handle toolbar ’RAM:Example.tb’
lister set handle title ’Lister visible’
lister set handle visible on
address command wait 3
lister close handle
address command ’delete RAM:Example.tb’
address command ’delete RAM:Surprise.info’
dopus back
exit

1.38 Magellan II ARexx Tutorial: The Phantom is...

666 666 666
666 666 666

666 666 666
666 666 666

6666666 6666666 6666666
666 666 666 666 666 666
666 666 666 666 666 666
666 666 666 666 666 666
666 666 666 666 666 666
666666 666666 666666

/* ListerTest.dopus5 */

1.39 Magellan II ARexx Tutorial: Manipulating Lister Entries

DOpusARexxTute 39 / 128

The main purpose of the listers is to enable you to manipulate ←↩
files/dirs

easily. The commands below are the main ones used for; finding information
about a file/directory, selecting entries, removing and adding entries.

dopus getfiletype
This command returns the Filetype of a file or directory as ←↩

defined in
your Filetypes, it does not need a lister to work.

lister query entry
This command provides every bit of information you can get on a ←↩

file or
directory, datestamp, protection, comment, etc, etc.

With the commands below, it is necessary to perform a
lister refresh

after them in order to have the lister display updated.

lister select
This command lets you select and unselect entries in listers, ←↩

perhaps your
script lets users select files then pick an action, as each file is processed
you could unselect it in the lister display giving the user direct visual
feedback of the progress.

lister remove
The lister remove command lets you remove entries from the ←↩

display, it
doesn’t remove them from the storage medium, just the display.

lister add
This command is simpler than the one below, but as a result, is ←↩

nowhere
near as powerful, lister addstem should be used in preference. It is here
for the sake of completeness.

lister addstem
This command allows you to add entries to listers, but it is not ←↩

restricted
to just entries. It can add arbitrary display strings and popup menus as
well.

1.40 Magellan II ARexx Tutorial: Dopus Getfiletype

ArcDir

DOpusARexxTute 40 / 128

The dopus getfiletype command is useful for just obtaining ←↩
information

on what type an file is, or what the Filetype ID is for the file.

You can use it for determining if your script has been called with the
right type of file, that is, if your script is designed to handle LhA
archives it’s hardly worthwhile having it trying to process a ZIP archive.

It can also be used to identify the Filetype ID of your argument, for
example, it will return ’LHA’ if used to identify an LhA archive, (providing
that’s what you use for an LhA Filetype ID of course).

Example:

/* DopusGetfiletype.dopus5 */
lf = ’0a’x
options results
address ’DOPUS.1’
dopus front
address command ’RequestFile >ENV:testfile S: title "Pick a file"’
address command ’rxset getfiletype ’$testfile
file = getclip(’getfiletype’)
dopus getfiletype file
text = ’The filetype is: ’result
dopus getfiletype file ID
if result ~= ’RESULT’ | result ~= ’’ then

text = text||lf||lf||’The Filetype ID is: ’result’.’
else

text = text||lf||lf||’The Filetype ID is unknown.’
dopus request ’"’text’" OK’
call delete(’ENV:testfile’)
dopus back
exit

1.41 Magellan II ARexx Tutorial: Lister Query Entry

ArcDir
The lister query entry command allows you to find information ←↩

about an
entry, (file, directory, etc), in a lister.

The output of the command can be displayed in two ways basically, depending
on how you format the command.

The first way will output the information in one long string of the form:

<name> <size> <type> <selection> <seconds> <protect> <comment>

This will returned in either
RESULT
or a variable that you specify if you

include the var parameter in the command.

The alternative provides a lot more information which is output in the form

DOpusARexxTute 41 / 128

of compound variables, the stem of which, you specify.

A simple description of a compound variable:

/ name = info.name
info.- date = info.date

\ type = info.type
^ ^
| |

This is These are the
the ’stem’. ’compound’ variables.

A more involved description of compound variables and stems can be found
in the Amiga ARexx manual.

Example:

/* ListerQueryEntry.dopus5 */
options results
address ’DOPUS.1’
dopus front
lf = ’0a’x
lister new mode name "S:"
handle = result
lister set handle display name comment version filetype
lister refresh handle full
lister wait handle
lister query handle entry "Startup-Sequence" var output
output = ’This is the output from ’’lister query entry’’ of’||lf||,

’the file ’’S:Startup-Sequence’’ without stem variables:’||lf||,
lf||output

dopus request ’"’output’" OK’
lister query handle entry "Startup-Sequence" stem info.
text = ’The following output is using compound variables’||lf||,

’with a stem of ’’info.’’’||lf||,
’info.NAME = ’||info.NAME||lf||,
’info.SIZE = ’||info.SIZE||lf||,
’info.TYPE = ’||info.TYPE||lf||,
’info.SELECTED = ’||info.SELECTED||lf||,
’info.DATE = ’||info.DATE||lf||,
’info.PROTECT = ’||info.PROTECT||lf||,
’info.DATESTRING = ’||info.DATESTRING||lf||,
’info.PROTSTRING = ’||info.PROTSTRING||lf||,
’info.COMMENT = ’||info.COMMENT||lf||,
’info.FILETYPE = ’||info.FILETYPE||lf||,
’info.VERSION = ’||info.VERSION||lf||,
’info.REVISION = ’||info.REVISION||lf||,
’info.VERDATE = ’||info.VERDATE||lf||,
’info.DATENUM = ’||info.DATENUM||lf||,
’info.TIME = ’||info.TIME

dopus request ’"’text’" OK’
lister close handle
dopus back
exit

A description of the various variables above can be found in the
DOpusM2_ARexx.guide .

DOpusARexxTute 42 / 128

NOTE: To obtain some variables, that particular information has to be
displayed in the lister, for example: you will not get the version
information if you have not enabled the version display in the lister.

1.42 Magellan II ARexx Tutorial: Lister Select

ArcDir
The lister select command allows you to select or unselect ←↩

various
entries in a lister according to their name, or a cardinal number that is
allocated due to their position in the lister.

Example:

/* ListerSelect.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new "RAM:" /* Open a new lister with path = RAM: */
handle = result /* Store it’s handle */
lister wait handle /* Wait until the lister is free */
lister select handle "T" on /* Select the T: directory */
lister refresh handle /* Refresh, T: should show as selected */
address command wait 3 /* Wait 3 seconds */
lister select handle "T" off /* Unselect the T: directory */
lister refresh handle /* Refresh, T: shouldn’t be selected */
address command wait 3 /* Wait 3 seconds */
lister close handle /* Close the lister */
exit

/* ListerSelect2.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new "SYS:" /* Open a new lister with path = SYS: */
handle = result /* Store it’s handle */
lister wait handle /* Wait until the lister is free */
lister select handle #0 on /* Select the first entry */
lister refresh handle /* Refresh, should show as selected */
address command wait 3 /* Wait 3 seconds */
lister select handle #0 off /* Unselect the first entry */
lister refresh handle /* Refresh, shouldn’t be selected */
address command wait 3 /* Wait 3 seconds */
lister close handle /* Close the lister */
exit

1.43 Magellan II ARexx Tutorial: Lister Remove

DOpusARexxTute 43 / 128

ArcDir
The lister remove command allows you to remove entries from a ←↩

lister. It
doesn’t delete the file or directory, just the entry in the display.

This could be useful for use in a custom handler where you could be adding
and removing entries as the result of a user’s actions.

Example:

/* ListerRemove.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new mode name ’SYS:’
handle = result
lister wait handle
text = ’We will now remove the ’’Devs’’ directory from the display’
lister request handle ’"’text’" OK’
lister remove handle ’Devs’
lister refresh handle
address command wait 3
lister close handle
dopus back
exit

1.44 Magellan II ARexx Tutorial: Lister Add

ArcDir
lister add

The lister addstem command allows you to add far more information and
is more flexible than the lister add command, and is discussed below.

Here we’ll just see what the lister add command can do.

The first difference between the two commands, is that with the lister add
command you must specify all parameters before an entry is added. So on the
command line you must include:

<filename> <size> <type> <seconds from 1-1-1978> <protection bits> <comment>

Example:

/* ListerAdd.dopus5 */
options results
address ’DOPUS.1’
lister new mode name
lister set handle display name size date protect comment
lister refresh handle full
handle = result /* Store the handle */
call setclip(’Lister.test’,handle)
exit

DOpusARexxTute 44 / 128

Run the above example, then click on one of the buttons below to add an
entry.

lister add handle ’Directory1’ 2 ’1’ 1000 rwed ’A Directory’
lister add handle ’File1’ 546 ’-1’ 60000 rwd ’A File’
lister add handle ’Directory2’ 1234 ’2’ 500000 d ’in assign colour’
lister add handle ’File2’ 64554 ’-2’ 734398 rw ’in device colour’
lister add handle ’Directory3’ 54654 ’3’ 87657 hwd ’in bold (link)’
lister add handle ’File3’ 245 ’-3’ 87656 hsparwed ’in bold (link)’
lister add handle ’Directory4’ 45 ’4’ 435435 har ’in assign colour and bold’
lister add handle ’File4’ 436565 ’-4’ 76567 pwed ’in device colour and bold’

Click on this button to close the lister.

This is equivalent to the
AddFile
command in Opus v4.

1.45 Magellan II ARexx Tutorial: Lister Addstem

With the lister addstem command, you need to set up the ←↩
compound variables

before you can add the entry to the lister. (See the
lister query entry

command for a simple explanation of compound variables.)

To be able to add an entry using stems you must specify at the very least
a filename, the other information will be set to the defaults, (for example,
current date/time, no comment, rwed protection bits).

Example:

/* ListerAddstem1.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new mode name
handle = result
fileinfo.NAME = ’TestFile’
lister addstem handle fileinfo.
lister refresh handle
address command wait 3
lister close handle
dopus back
exit

This is equivalent to the
AddFile
command in Opus v4.

You can also get the information from a
lister query entry
command and

DOpusARexxTute 45 / 128

use that for adding an entry without modification.

Example:

/* ListerAddstem2.dopus5 */
options results
address ’DOPUS.1’
dopus front
lf = ’0a’x
lister new mode name "S:"
handle = result
lister set handle display name comment version filetype
lister refresh handle full
lister wait handle
address command wait 2
lister query handle entry "Startup-Sequence" stem info.
text = ’We will get the information for the’||lf||,

’’’Startup-Sequence’’ file, and then’||lf||,
’change the path in the lister and’||lf||,
’add an entry with the same data.’

dopus request ’"’text’" OK’
text = ’The following information is for the’||lf||,

’file ’’S:Startup-Sequence’’:’||lf||lf||,
’NAME = ’||info.NAME||lf||,
’SIZE = ’||info.SIZE||lf||,
’TYPE = ’||info.TYPE||lf||,
’SELECTED = ’||info.SELECTED||lf||,
’DATE = ’||info.DATE||lf||,
’PROTECT = ’||info.PROTECT||lf||,
’DATESTRING = ’||info.DATESTRING||lf||,
’PROTSTRING = ’||info.PROTSTRING||lf||,
’COMMENT = ’||info.COMMENT||lf||,
’FILETYPE = ’||info.FILETYPE||lf||,
’VERSION = ’||info.VERSION||lf||,
’REVISION = ’||info.REVISION||lf||,
’VERDATE = ’||info.VERDATE||lf||,
’DATENUM = ’||info.DATENUM||lf||,
’TIME = ’||info.TIME

dopus request ’"’text’" OK’
text = ’We will now add this entry’||lf||,

’to the lister after changing’||lf||,
’it’’s path to ’’RAM:’’’

dopus request ’"’text’" OK’
lister read handle "RAM:" force
lister wait handle
lister addstem handle info.
lister refresh handle
text = ’This hasn’’t copied the file from ’’S:’’’||lf||,

’it has just copied the entry details for’||lf||,
’’’Startup-Sequence’’ into the lister display.’

dopus request ’"’text’" OK’
text = ’If we reread the directory the entry’||lf||,

’will disappear because the file doesn’’t’||lf||,
’exist in ’’RAM:’’’

dopus request ’"’text’" OK’
lister read handle "RAM:" force
address command wait 3

DOpusARexxTute 46 / 128

lister close handle
dopus back
exit

While listers are mainly file manipulation interfaces, you can make them
display other information. There is a DISPLAY field that can be used to
display any text you want, it can contain up to 256 characters.

Two good examples of what you can use the DISPLAY field for are shown in my
Grep.dopus5, (used for displaying text search output), and Awari.dopus5
scripts, (a game in a lister). Both of these scripts should be available on
either Aminet by the time you read this, or on the DOpus Plus CD.

Example:

/* ListerAddstem3.dopus5 */
options results
address ’DOPUS.1’
dopus front
lister new ’0/11/150/200’ mode name
hande = result
fileinfo.DISPLAY = ’Some really silly text demonstrating the DISPLAY field !@#$ ←↩

%^&*()_+|:?><,./][{}\=-‘~’
lister addstem handle fileinfo.
lister refresh handle
address command wait 5
lister close handle
dopus back
exit

This is equivalent to using
AddCustEntry
command in Opus v4.

1.46 Magellan II ARexx Tutorial: Command

ArcDir
The command command is used for calling one of Opus’ commands ←↩

that is
in the internal command list, whether they be an ’original’ or a ’replaced’
version.

Since internal commands act primarily between a SOURCE lister and a
DESTINATION lister, this is the way the command command works since it is
only calling internal commands. If there aren’t any, then the command is
ignored. You can tell the command to act specifically on a SOURCE and
DESTINATION lister by specifying their handles in the command line, like
so:

command source <source_handle> dest <dest_handle>

In the following example, we will only use one SOURCE lister, to ensure
this all other listers will be closed, then a new one opened and locked

DOpusARexxTute 47 / 128

as SOURCE.

Example:

/* Command.dopus5 */
options results
address ’DOPUS.1’
lister close all
lister new mode name "DOpus5:Icons"
handle = result
lister set handle source lock
call setclip(’Lister.test’,handle)
exit

WARNING: The following buttons allow you to select files/dirs,
if you then use the last button, those files will be DELETED!!!
I have used the DOpus5:Icons directory as an example because it
generally contains non-critical files that you can re-install
from the distribution disks.

Please use the commands in the order they are shown, OR make
certain before you push the last one that the path in the lister
is the correct one!!!!!!

Run the example above, then click on the buttons below to see what happens.

In the first two command buttons below, we’ve added the parameter wait .
This is just telling Opus to wait until that command has been executed,
normally the commands will be done asynchronously, that is, it doesn’t wait
to see the result.

command wait all
command wait none
command flash
command beep

Supposing you have replaced the internal Copy command with an enhanced
version, (See

Example 12: Improving the internal commands
), to ensure

his script runs the same on everybodies setup, the writer could use the
original parameter to tell Opus to use the original Copy command, not

your enhanced version.

command original copy DOpus5:Icons TO RAM:

command ScanDir RAM:Icons
command select name Opus.info
command play
command select name Group.info
command read
command doubleclick Settings.info
command parent
command select name Icons

Check your path before using!!!!!

DOpusARexxTute 48 / 128

command delete

Click on this button to close the lister.

1.47 Magellan II ARexx Tutorial: FTP Commands

OpusFTP doesn’t have any ARexx commands, but Greg wanted ←↩
something simple,

so here I am :)

The number of commands in the OpusFTP module has been reduced in the latest
version because the need for some of them has been made obsolete.

In previous versions of OpusFTP you needed commands that could allow you
access to so-called ’hidden’ files or directories. For example, on Aminet
you have a file named ’RECENT’, and also a directory named ’recent’. Both
appear in the Aminet ’root’ directory, but because they had the same name
only one would be displayed in a lister, (remember, AmigaDOS is case-
insensitive, even though the target filesystem might not have been).

Due to the fact that listers can now be case-sensitive, there is now no
need for the following commands: FTPCD, FTPCopy, FTPDelete, and FTPRename.

The OpusFTP module has no ARexx interface, but the commands it adds to Opus
can be accessed as though they were normal Opus commands like All, None, etc.

To access them you just call them as you would for any other normal Opus
internal command, that is, you preceed them with the

command
command.

The following commands are all that are available through the OpusFTP
module interface.

FTPAdd FTPAddressBook FTPCommand FTPConnect
FTPOptions FTPQuit FTPSetVar

The ftpaddressbook command doesn’t do anything amazing, all it does is
open the FTP address book so that you can edit or connect to an entry.

Example:

/* FTPAddressbook.dopus5 */
options results
address ’DOPUS.1’
command ftpaddressbook
address command wait 3
command ftpquit
exit

This is probably even easier than the dopus back and dopus front
commands.

DOpusARexxTute 49 / 128

The FTPConnect command instructs OpusFTP to connect to the specified
site, using a username/password if provided, changing to a specified
directory, and listing it, if asked.

NOTE: The following example will require a TCP/IP connection to the
InterNet in order to execute, and it will try to download the latest
Aminet INDEX of directory biz/dopus to RAM:. Do not execute it if
you don’t have a stack running or believe it will cause financial
hardship.

With this example, because we know there will be a file called INDEX in the
biz/dopus directory, (standard Aminet directory index), there is no need to
actually have the lister scan the directory in. This can save time, (and
save you some money too ;-) and we can do this by adding the flag noscan
to the ftpconnect command.

Example:

/* FTPConnect.dopus5 */
lf = ’0a’x
options results
address ’DOPUS.1’
’command wait ftpconnect host wuarchive.wustl.edu dir /pub/aminet/biz/dopus noscan ←↩

recon’
handle = result
text = ’We should now be connected to Aminet’
dopus request ’"’text’" OK’
text = ’I like this directory, in fact I’’ll think’||lf||,

’I’’ll add it to your address book :)’
dopus request ’"’text’" Yes?|No!’
if rc ~= 0 then command ftpadd
lister set handle source
’command original wait copy INDEX TO RAM:’
lister close handle
command ftpquit
exit

Directory Opus is fully multitasking and multithreading, just because you
have closed the lister that was your FTP connection does not mean that the
FTP process has been ended.

If you no longer require the FTP module loaded, then issuing an FTPQuit
command will remove it from the task list. This will also stop a requester
opening when you quit your TCP/IP stack.

For example, supposing you had a script that did the following:

1) Start Miami.
2) Log on to ISP.
3) Start OpusFTP.
4) Log in to an Aminet site and download the ’RECENT’ file.
5) Close the FTP connection.
6) Tell Miami to log off and quit.
7) Analyse RECENT file for specific keywords indicating interesting stuff,

and present them in the dopus viewer for you.

If you didn’t tell the OpusFTP module to quit, then when you asked Miami to

DOpusARexxTute 50 / 128

quit, Miami would put up a requester similar to the following:

The following applications
are still using Miami:

ftp_addressbook

Proceed anyway?

Yes No

Your script would halt, waiting for the requester to be acknowledged. This
would mean that step 7, which analyses the ’RECENT’ file for interesting
stuff would never happen, until you acknowledged Miami’s requester.

In fact while we’re at it, why don’t we create a simple script to do the
above steps. Since this will be simple, practically no error checking will
be used, you could expand upon this script to add it and any other features,
like downloading the interesting files as well.

If you’re not using Miami v3, which provides the assign ’Miami:’, then
change the line:

address command ’Miami:Miami’

to point to where you keep it.

/* ParseAminetRecent.dopus5 */
lf = ’0a’x
interesting = ’biz/dopus hard/hack util/dtype sex beer money’

options results
address ’DOPUS.1’

if ~show(’p’,’MIAMI.1’) then do
address command ’Miami:Miami’
WaitForPort ’MIAMI.1’
if ~show(’p’,’MIAMI.1’) then do

dopus request ’"Unable to run Miami!" OK’
exit
end

end

flag = 0
address ’MIAMI.1’ ’ISONLINE’
if rc then flag = 1 /* see if Miami is already online */
do while flag = 0

address ’MIAMI.1’ ’ONLINE’
address ’MIAMI.1’ ’ISONLINE’
if rc then flag = 2

end

lister new
handle = result
lister set handle source
’command wait ftpconnect lister ’handle’ host ftp.livewire.com.au dir /pub/aminet ←↩

noscan recon’

DOpusARexxTute 51 / 128

command source handle original wait ’copy name=RECENT to=RAM:’

lister close handle
command ftpquit
if flag = 2 then do

address ’MIAMI.1’ ’OFFLINE’ /* Leave Miami online if it */
address ’MIAMI.1’ ’QUIT’ /* was already */
end

if ~open(’infile’,’RAM:RECENT’,’R’) then do
dopus request ’"Cannot open RECENT file!" OK’
exit
end

text = ’Found these interesting files:’
do while ~eof(’infile’)

aline = readln(’infile’)
do i = 1 to words(interesting)

if index(aline, word(interesting,i)) > 0 then do
text = text||lf||aline
leave
end

end
end
call close(’infile’)

dopus request ’"’text’" OK’
exit

1.48 Magellan II ARexx Tutorial: Opus v4 functions

Some of you may have noticed that some of the commands from Opus ←↩
v4.x are

missing from Opus v5.x.

While there really is no need for some of these commands in Opus v5, some
users have decided they couldn’t live without them and have created scripts
that emulate these commands.

Below is a list of the Opus v4 internal and ARexx commands, together with
their equivalent in Opus v5. The commands in the Opus v4 column in white are
the ARexx commands that were available in v4.

Directory Opus V4 Directory Opus V5

AbortPrint Available from the Print requester .
About Menu - Opus About
AddCustEntry lister addstem
AddCustHandler lister set handler
AddFile lister add

lister addstem
AddIcon AddIcon
Alarm Alarm

DOpusARexxTute 52 / 128

All All
AnsiRead AnsiRead

dopus read
ARexx Can be selected via the Function Editor .
Assign Assign
Beep Beep
BufferList CacheList
Busy lister set busy

Now that the listers go busy, there is
really no need to busy the pointer.
Remember Opus v5 is fully multitasking
and multithreading.

ButtonIconify Available through each button banks
popup menu.

CD
CheckAbort dopus progress

lister query abort
CheckFit CheckFit
ClearBuffers FreeCaches

lister clearcaches
ClearSizes ClearSizes
ClearWin lister clear
Clone Duplicate
Comment Comment
Configure All settings are available through the

Settings menu.
ContST
Copy Copy
CopyAs CopyAs
CopyWindow

A script to emulate this function
lister copy

DateStamp DateStamp
Defaults You can load any environment through

the Environment Editor .
Delete Delete
DirTree Listers do not support displaying

directories as a tree, but there is no
reason why you could not write a script
or module to do it :)

DiskCopy DiskCopy
DiskCopyBG No longer required because the DiskCopy

process multitasks.
DiskInfo DiskInfo
DisplayDir ScanDir

lister refresh
DOpusToBack dopus back
DOpusToFront dopus front
Encrypt Encrypt
ErrorHelp
Execute Can be selected via the Function Editor.
FileInfo lister query entry
FinishSection FinishSection
Format Format
FormatBG No longer required because the Format

process multitasks.
GetAll lister query entries

DOpusARexxTute 53 / 128

GetDevices DeviceList
GetDirs lister query dirs
GetEntry lister query entry
GetFileType dopus getfiletype
GetFiles lister query files
GetNextSelected lister query firstsel
GetSelectedAll lister query selentries
GetSelectedDirs lister query seldirs
GetSelectedFiles lister query selfiles
GetSizes GetSizes
Help Simply press the Help key, or use the

Opus - Help! menu item.
HexRead Read

HexRead
dopus read

Hunt FindFile
Iconify Hide
IconInfo IconInfo
Install Available through the Format process.
InstallBG Available through the Format process.
LastSaved Available through the Environment Editor .
LoadConfig LoadEnvironment
LoadStrings
LoopPlay
MakeDir MakeDir
Modify Modify items using the Environment Editor

then choose Use.
Move Move
MoveAs MoveAs
NewCLI CLI
NextDrives DeviceList
None None
OtherWindow Since you are not restricted to two

windows like v4, there is no equivalent
to this function. The easiest way to
swap listers is to activate them with the
mouse.

Parent Parent
PatternMatch
Play Play
PlayST Play will handle some formats but

it is better to use a dedicated module
player like DeliTracker, etc using
filetypes.

Print Print
PrintDir PrintDir
Protect Protect
Query lister query
Quit Quit
Read Read

dopus read
Redraw Use the Icons - Reset menuitem, to redraw

Opus’ Desktop.
Relabel Rename
Remember
RemoveEntry lister remove
RemoveFile lister remove

DOpusARexxTute 54 / 128

Rename Rename
Request dopus request

dopus getstring
lister request
lister getstring

Rescan ReReadDir
Reselect ReSelect
Restore
Root Root
Run Run
SaveConfig Available through the Environment Editor .
ScanDir ScanDir
ScrollH
ScrollToShow You can scroll the listers while

operations are happening.
ScrollV
Search Search
Select Select
SelectEntry lister select
SelectFile lister select
SetWinTitle lister set title
Show Show
SmartRead SmartRead
Status lister query

lister set
StopST The Play command provides an abort

button to end playing, provided you haven’t
used the QUIET switch.

SwapWindow
A script to emulate this function

TechSupport Read the manual!
Toggle Toggle
TopText lister set header

lister set title
Uniconify Reveal
User1 - User4 User

User1
User2
User3
User4

Verify Confirm
Version dopus version

1.49 Magellan II ARexx Tutorial: Integration

Opus can be used to provide functions not available in other ←↩
programs,

such as the ’Opus and AWeb’ link below, or perhaps just a convenient
interface to another program.

Opus and AWeb

DOpusARexxTute 55 / 128

1.50 Magellan II ARexx Tutorial: Opus and AWeb II v2.x

Here is a simple example of integrating OpusFTP functions into AWeb II,
which prior to v3.x had no native code to handle ftp:// sites.

When you click on a ftp:// link in AWeb II, the site will be
passed to OpusFTP as well as the initial directory if one exists.

If the port ’DOPUS.1’ doesn’t exist the script will exit with an error,
otherwise OpusFTP will assume an anonymous login and try to connect to that
site changing to the initial directory if one was passed.

/*
OpusAWebFTP.dopus5
$VER: OpusAWebFTP.dopus5 1.2 (14.5.96) Andrew Dunbar

Copy to your Dopus5:Arexx directory
Add these lines to AWeb’s Setting/Network 3: External programs

Command: Sys:Rexxc/RX
Arguments: DOpus5:Arexx/OpusAWebFTP.dopus5 %s %s

*/

if ~show(’P’,’DOPUS.1’) then exit 20
address ’DOPUS.1’
parse arg host dir .
if host ~= ’’ then do

dopus front
if dir ~= ’’ then command ftpconnect host ’dir’ dir
else command ftpconnect host
end

exit

1.51 Magellan II ARexx Tutorial: Some ideas

Here’s where I try to inspire you into bashing away on that keyboard :)

1) A script to make updating your WWW page simple, should be easy.

After you’ve logged on to your site via OpusFTP, open a lister with your
local WWW page directory structure and run the script.

a. Get all the file entries in the local lister with lister query files .
b. Do a lister query entry on the ftp lister.
c. If it doesn’t exist, copy it.
d. If the creation date is earlier than the local version, copy over it.
e. After you’ve done the files, then get the list of directories and check

their creation dates.
f. If the dates are earlier, change path to the directory in both listers

and go to step a. (Recursion)
g. When you’ve finished that directory, restore to the initial path and do

the next.

I’ll watch for it on Aminet ;-)

DOpusARexxTute 56 / 128

Of course you could just use the options for the internal Copy command, but
that’s so boring :^)

2) We need more games in listers, Opus is much too serious. I’ve done one,
but I want to see OpusInvaders in a lister.

3) Archive handler for ZIP, TAR, GZIP and other archives. (Beat me to it,
please :)

4) Link it into your home automation, get it to boil that egg.

Use your imagination, I’m sure there’s always been something you wanted
Opus to do or do differently. Opus is the most configurable program that’s
been written on the Amiga, how it works and what it does is all up to you.

USE THE FORCE!

1.52 Magellan II ARexx Tutorial: Opening a lister with the path of your current shell

Even with the few commands we have seen so far, we can create some useful
ARexx scripts, here is a simple example:

/*
$VER: DOS-DOpus.dopus5 1.0 (28.7.98)
Loads current shell directory into a new DOpus5 lister.

*/
options results /* Enable results */
if ~show(’P’,’DOPUS.1’) then do /* Check for DOPUS.1 ARexx port */

Say "DirectoryOpus is not running." /* Warn user if DOpus not running */
Exit 5 /* Exit with result code = 5 (Warn) */
end /* End this loop */

Address ’DOPUS.1’ /* Address DOpus */
dopus front /* Bring DOpus to the front */
dir = pragma(’d’) /* Returns current shell in ’dir’ */
lister new dir /* Open a new lister, path ’dir’ */
exit /* Exit */

Pressing this button will put this script into the DOpus5:ARexx/ directory,
then from an AmigaDOS shell type:

rx DOpus5:ARexx/DOS-DOpus.dopus5

What will happen is the script will bring Opus to the front of your
display, then open a new lister with the shell’s path, the script will then
end. You can then select files in that directory to perform operations
on without having had to open a new lister and work your way through the
directory structure.

We don’t need to store the lister’s handle for such a simple script,
because we don’t perform any further operations on that lister.

Hint: Rather than having to type in ’rx DOpus5:ARexx/DOS-DOpus.dopus5’
every time you want to use the script, edit your S:Shell-Startup file and
insert something similar to the following line:

DOpusARexxTute 57 / 128

Alias DD "rx DOpus5:ARexx/DOS-DOpus.dopus5"

Now when you type ’DD’ in a shell it will call the above script.

1.53 Magellan II ARexx Tutorial: Changing the shell path to the same as the lister

Using the lister query command can now allow us to do almost ←↩
the

opposite of the first
example
given previously.

This example will allow you to change your current path in a shell by
entering a simple command, to that of the source, destination or any lister,
in that order.

That is, if there is a source lister you will change to it’s path, if there
isn’t a source lister, then the first destination lister will be used, if
there isn’t a destination lister, then the first non-busy lister will be
used.

If no non-busy listers are found then a requester will open informing you.

/*
$VER: CDO.dopus5 1.0 (6.8.98)
Changes your shell path to lister path

*/
options results
if ~show(’P’,’DOPUS.1’) then do /* Check for DOPUS.1 ARexx port */
Say "Directory Opus is not running." /* Warn user if Opus not running */
Exit 5 /* Exit with result code = 5 (Warn) */
end /* End this loop */

address ’DOPUS.1’
lister query source /* Look for a Source lister */
if result = ’’ | result ~= ’RESULT’ then call gotone /* We’ve found one */
lister query dest /* Look for a Destination lister */
if result = ’’ | result ~= ’RESULT’ then call gotone /* We’ve found one */
lister query all /* Look for any non-busy lister */
if result = ’’ | result ~= ’RESULT’ then call gotone /* We’ve found one */
dopus request ’"No non-busy listers found" OK’ /* We didn’t find any */
exit 5 /* suitable listers */

gotone:
parse var result handle . /* Parse the first lister handle */
lister query handle path /* Ask for it’s current path */
path = strip(result,’b’,’"’) /* Store the path, strip "’s */
push path /* Push the result into the input stream */
say pragma(’d’)
exit

Press this button to copy this script to the DOpus5:ARexx/ directory, open a
lister, then in a shell type:

rx DOpus5:ARexx/CDO.dopus5

The shell’s current path should now be the same as the lister.

DOpusARexxTute 58 / 128

Hint: Rather than having to type in ’rx DOpus5:ARexx/CDOpus.dopus5’ every
time you want to use the script, edit your S:Shell-Startup file and insert
something similar to the following line:

Alias CDO "rx DOpus5:ARexx/CDOpus.dopus5"

Now when you type ’CDO’ in a shell it will call the above script.

1.54 Magellan II ARexx Tutorial: Improved DOS-DOpus script (Example 1)

Now that we have seen what the
command
command does, we can improve

the functionality of our original
example
script, DOS-DOpus.dopus5.

/*
$VER: DOS-DOpus.dopus5 1.1 (28.7.98)
Loads current shell directory into a new DOpus5 lister, selects files
according to the passed filespec.

*/
options results /* Enable results */
parse arg pattern . /* Parse a given pattern into a variable */
if ~show(’P’,’DOPUS.1’) then do /* Check for DOPUS.1 ARexx port */
Say "Directory Opus is not running." /* Warn user if Opus not running */
Exit 5 /* Exit with result code = 5 (Warn) */
end /* End this loop */

Address ’DOPUS.1’ /* Address Opus */
dopus front /* Bring Opus to the front */
dir = pragma(’d’) /* Returns current shell in ’dir’ */
lister new dir /* Open a new lister, path ’dir’ */
handle = result /* Store the handle */
lister wait handle /* Wait for the lister to finish */
if pattern ~= ’’ then

command source handle select name=’"’pattern’"’ /* Select the files */
lister refresh handle /* Refresh the display */
exit /* Exit */

Now when you enter:

rx DOpus5:ARexx/DOS-DOpus.dopus5 #?.info

a lister will open with your shell’s current path, and any icon files will
show as selected.

It’s also possible to have Opus perform some function on the selected files
by adding a couple of lines.

if function ~= ’’ then
command source handle original wait function

DOpusARexxTute 59 / 128

If you add these two lines after the command source handle select... line,
then when you enter:

rx DOpus5:ARexx/DOS-DOpus.dopus5 #?.info delete

A lister will open, all icon files will be selected then they will be
deleted.

1.55 Example 6: Changing the background every 30 seconds

This is just a diversion from serious scripts, all it does is change the
Desktop background every 30 seconds.

/* RandomBackground.dopus5 */
options results
signal on halt
address command ’Copy Extras/#?.iff T:’
if ~show(’l’,’rexxsupport.library’) then

call addlib(’rexxsupport.library’,,-30)
address ’DOPUS.1’
dopus query background main
oldmain = result
pattern = ’T:#?.iff’
do forever

dopus set background ’"’pattern’"’ custom
dopus refresh background custom
call delay(1500)

end
halt:
dopus refresh background
address command ’Delete T:#?.iff QUIET’
exit

Hit this button to stop it, your background will revert to normal
when it goes to change it again.

1.56 Magellan II ARexx Tutorial: Simple ARexx Module #1

This simple module adds a command to the internal command list ←↩
called

Ports. When you call this command it will use the ARexx Show command
to get a list of message ports from the system, then format them and present
the output in an Opus requester.

This is a very simple example of a module in that it does not need to get
any information from Opus and only uses two Opus ARexx commands in total.

By removing lines 5, 8-11, and changing line 6 to: address ’DOPUS.1’
you can change this script so that it isn’t a module, and can be executed
from a button in Opus as an ARexx script rather than an internal command, or
even from a shell.

DOpusARexxTute 60 / 128

It just serves to illustrate how easy it is to turn a standalone script
into an Opus internal command.

1/*
2$VER: Ports.dopus5 1.2 (10.8.98)
3Show all system message ports in an DirectoryOpus requester
4*/
5parse arg portname function source dest arguments .
6address value portname
7options results

8if function = ’init’ then do
9 dopus command "Ports" program "Ports" desc "’Display all system message ←↩

ports’"
10 exit
11 end

12lf = ’0a’x
13port = ’’
14names = SHOW(ports,,’^’)

15do while names ~= ""
16 parse var names currport "^" names
17 if left(currport,4) = ’|WSH’ then currport = ’<’||substr(currport,2)||’>’
18 port = port||currport||lf
19end
20port = "Message Ports:"||lf||lf||port
21 dopus request ’"’port’" Ok’
22exit

Lines:
1-4 These are just the version information for the script and a short

description of what it does.

5 Opus will send these five arguments to any ARexx module:
portname - The Opus ARexx port, eg. DOPUS.1
function - What function has been called, in case the module

provides more than one.
source - The handle of the source lister.
dest - The handle of the destination lister.
arguments - Any extra arguments that you have specified.

6-7 Here we address the parsed portname, and tell ARexx to return results.

8 For any ARexx module to be added to the command list it must
provide a function ’init’. This function is initially called
when the DOpus5:Modules/ directory is scanned and the module
detected, this function will add your commands to the command
list.

9 The dopus command is the line that actually adds your command to
the list. It breaks down as follows:

dopus command - The Opus ARexx command.
"Ports" - The command name that will appear in the

command list, in quotes.
program "Ports" - This tells Opus what program to call in the

DOpusARexxTute 61 / 128

DOpus5:Modules/ directory when your function
is called. The script named must have the
suffix ’.dopus5’, eg. the above example will
have the filename ’Ports.dopus5’.

desc "’Display all system message ports’"
- This is a brief description that will appear

next to the command ’Ports’ when it is added
to the internal command list.

If you are adding more than one command, you will require the relevant
number of dopus command lines. When your script is called, you
would then use ’if...then’, or ’select...case’ statements to action
the required function.

Since this script only adds one function, no other ’if function...then’
statements are required except the one required to differentiate the
’init’ function.

10 We exit because the ’init’ function is finished once you have
specified your commands.

12-13 We define a couple of variables: lf = a linefeed character
ports = empty string

14 We ask for all the system message ports returned in variable ’names’,
seperated with the character ’^’.

15-19 We start looping, grabbing the first port each time, if the port =
’|WSH’, (an idle WShell), we change the output so it will be <WSH_x>,
(because it looks better :) Then add the port to the variable ’port’
together with a linefeed to seperate them.

20-21 Once finished we add a header to the output, and then call the

dopus request
command to display the results.

1.57 Magellan II ARexx Tutorial: Simple ARexx Module #2

This module will allow you to select a files and then set their ←↩
comment

to their version information. It is a bit more complex than the preceding
module in that we need to retrieve information from the lister and from
any selected files within that lister.

If you want to use this module on your computer, simply click on this
button and it will be copied to your DOpus5:Modules/ directory.

All you need to do to use it is to create a button in your toolbar as below:

Command Ver2Com

NOTE: Because this example is simple, there is virtually no error

DOpusARexxTute 62 / 128

checking incorporated into it.

1 /*
2 $VER: Ver2Com.dopus5 1.0 (3.8.98) D.Clarke
3 Copies file version information to comment field of file.
4 */
5 parse arg portname function source dest arguments
6 address value portname
7 options results

8 if function = ’init’ then do
9 dopus command "Ver2Com" program "Ver2Com" desc "’Copies file version to ←↩

comment’" ’source’
10 exit
11 end

12 lister query source display
13 if pos(’version’,result) = 0 then do
14 lister request ’"Lister must have Version display" OK’
15 exit 5
16 end
17 lister query source path
18 path = strip(result,B,’"’)
19 lister query source selfiles stem files
20 if files.count = 0 | files.count = ’’ | files.count = ’RESULT’ then do
21 lister request ’"No files selected" OK’
22 exit (5)
23 end
24 do i = 0 to files.count - 1
25 lister query source entry ’"’files.i’"’ stem fileinfo.
26 info = fileinfo.version||’.’fileinfo.revision’ (’fileinfo.verdate’)’
27 if info ~= ’. ’ then do
28 command wait original comment ’"’path||files.i’"’ ’"’info’"’
29 fileinfo.comment = info
30 lister addstem source fileinfo.
31 end
32 lister select source files.i off
33 lister refresh source
34 end
35 exit

Lines:
1-4 These are just the version information for the script and a short

description of what it does.

5 Please refer to the explanation of this line given in

Example 7: Simple ARexx Module #1
6-7 Here we address the parsed portname, and tell ARexx to ←↩

return results.

8 Please refer to the explanation of this line given in

Example 7: Simple ARexx Module #1
9 The dopus command is the line that actually adds your ←↩

command to
the list. It breaks down as follows:

DOpusARexxTute 63 / 128

dopus command - The Opus ARexx command.
"Version2Comment" - The command name that will appear in the

command list, in quotes.
program "Ver2Com" - This tells Opus what program to call in the

DOpus5:Modules/ directory when your function
is called. The script named must have the
suffix ’.dopus5’, eg. the above example will
have the filename ’Ver2Com.dopus5’.

desc "’Copies file version to comment’"
- This is a short description of what your command

does. It will appear in the command list next
to your command.

’source’ - This specifies to Opus that there must be a
SOURCE lister present, and for it’s handle to be
sent to the function. If no SOURCE lister is
available, nothing will happen when this script
is called. Because you have indicated that you
only require the ’source’ parameter, the
destination handle sent to the module will be 0.

If you are adding more than one command, you will require the relevant
number of dopus command lines. When your script is called, you
would then use ’if...then’, or ’select...case’ statements to action
the required function.

Since this script only adds one function, no other ’if...then’
statements are required except the one required to differentiate the
’init’ function.

10 We exit because the ’init’ function is finished once you have
specified your commands.

12-16 This particular example requires that the lister display has been set
to show a file’s version, (see Opus manual on Environment/Lister
Display). If it hasn’t, you will get a requester over the lister
informing you, and the script will then exit with a return code of 5,
(WARN).

17-18 We query the lister’s path, strip any leading/trailing quotes, and
assign the variable ’path’ to it.

19-23 We query the number of selected files only, (no version numbers for
directories), and instruct Opus to return the result in a compound
variable with a stem of ’files’. So you will get the following,
assuming that there are 3 selected files.

files.count = 3
files.0 = First filename
files.1 = Second filename
files.2 = Third filename

If files.count equals zero, an empty string, or the word ’RESULT’, we
open a requester saying no files are selected and exit with a return
code of 5, (WARN).

24 We start a ’do’ loop that will increment from 0, (first filename), to

DOpusARexxTute 64 / 128

files.count - 1, (last filename).

25 Query the lister for information on the first filename, putting the
results in to a compound variable with the stem of ’fileinfo’.

The results of this will look like the following:

fileinfo.NAME = filename
fileinfo.SIZE = size in bytes
fileinfo.TYPE = (<0 = file, >0 = dir)
fileinfo.SELECTED = 0 or 1
fileinfo.DATE = seconds since 1/1/78
fileinfo.PROTECT = protection bits (hsparwed)
fileinfo.DATSTRING = datestamp in ASCII
fileinfo.COMMENT = the filecomment (if any)
fileinfo.FILETYPE = file type (if any)
fileinfo.VERSION = version number
fileinfo.REVISION = revision number
fileinfo.VERDATE = version date (numerical dd.mm.yy format)
fileinfo.DATENUM = file date in numerical dd.mm.yy format
fileinfo.TIME = file time in hh:mm:ss 24 hour format
fileinfo.DISPLAY = any user defined display information

More information on this command can be found
here

.

26 We take the relevant file information and format it into a variable
’info’.

27 If ’info’ equals ’. ’, ie. no version information available, we skip
the next statements, unselect the file, (lines 32-33), and loop to
the next filename.

28 Here we use the
command
command to call the ’original’ Opus Comment

command, (just in case someone has replaced the original with their
own version), sending the full path and filename, and our reformatted
version information, ’info’. It will ’wait’ for the command to return
before allowing the script to continue.

29-30 Now that we have provided the file with a new filecomment, we need to
update the lister display with the new information. We make the
compound variable ’fileinfo.comment’ equal our new filecomment,
(info), then using the command ’lister addstem’ we add the updated
entry back into our lister.

32-33 Finally, we unselect the file, then refresh the lister display so that
it displays the file unselected and with our new filecomment
information.

34 Loop back to the start of the ’do’ loop.

35 Exit when we’ve done them all.

DOpusARexxTute 65 / 128

1.58 Magellan II ARexx Tutorial: Multi-Command ARexx Module

A module doesn’t have to do anything in itself, in this example we are just
using it as a convenient way to add scripts/commands to the popup menu for
certain filetypes.

This script is taken straight from my DOpus5:Modules/ directory, so a bit
of explaining about my filetypes setup might be necessary first, before you
can see how it can work.

I have filetypes for many different archives, for example: LhA, LZX, DMS,
GZIP, HPACK, TAR, ARJ, RAR, OWS, ZIP, ARC...

For the archives I just mentioned, most people would have the filetype IDs
as: LHA, LZX, DMS, GZIP, HPACK, TAR, ARJ, RAR, OWS, ZIP, ARC...

The way my filetype IDs for the above are set up is: aLHA, aLZX, aDMS,
aGZP, aHPK, aTAR, aARJ, aRAR, aOWS, aZIP, aARC... That is, a lower case ’a’
followed by three letters signifying the archive type.

You might think this is a bit strange, but where it is extremely useful is
in the adding of menuitems and similar. For example, for all of my archive
filetypes I have ’User4’ defined as the ’Test archive’ function. So that
whenever I call ’User4’ on any type of archive, I know that will test it with
the appropriate archiver.

If you wanted to add a ’Test’ menuitem to the popup menu for each type of
archive, you would have to go into the Filetype Editor for each one and add
it to the Icon popup menu.

Or, if you were going to do it as per below, you would need to change this
line:

dopus command "Test" program "General" ’source’ ext ’Test...’ type a??? private

to this:

dopus command "Test" program "General" ’source’ ext ’Test...’ type LHA type LZX ←↩
type DMS private

adding in every archiver ID you have, as you can see you will end up with a
very long line.

I, on the other hand, would just include a line like you can see below:

dopus command "Test" program "General" ’source’ ext ’Test...’ type a??? private

Using the wildcard feature for specifying a ’type’, I have just added a
’Test’ menuitem to every archive filetype.

Much easier ;-)

I also use the same system for pictures, (p????), and documents, (d????).

On with the example:

1 /*

DOpusARexxTute 66 / 128

2 $VER: General.dopus5 1.0 (10.07.96)
3
4 This module adds the following things:
5
6 Adds a ’Browse...’ command to the popup menu for LhA and LZX archives.
7 Adds a ’GetDir...’ command to the popup menu for LhA and LZX archives.
8 Adds an ’UnDMS...’ command to the popup menu for DMS archives.
9 Adds a ’Test...’ command to the popup menu for ALL archives.

10 Adds a ’Container’ command to the popup menu for left-out files/dirs.
11
12 Requirements:
13
14 Needs ArcDir.dopus5 and UnDMS.dopus5 installed, both by Edmund Vermeulen.
15 */
16 parse arg portname function srce dest filename .
17 address value portname
18 options results
19
20 /* Initialise */
21 if function = ’init’ then
22 do
23 dopus command "Browse" program "General" ’source’ ext ’Browse...’ type ←↩

aLHA type aLZX private
24 dopus command "GetDir" program "General" ’source’ ext ’GetDir...’ type ←↩

aLHA type aLZX private
25 dopus command "UnDMS" program "General" ’source’ ext ’UnDMS...’ type aDMS ←↩

private
26 dopus command "Test" program "General" ’source’ ext ’Test...’ type a??? ←↩

private
27 dopus command "Container" program "General" ext "’Open Container’" type ←↩

leftout private
28 exit
29 end
30 if function = ’Browse’ then dopus rx ’DOpus5:ARexx/ArcDir.dopus5 Browse’ ←↩

portname filename srce
31 if function = ’GetDir’ then dopus rx ’DOpus5:ARexx/ArcDir.dopus5 GetDir’ ←↩

portname filename srce
32 if function = ’UnDMS’ then dopus rx ’DOpus5:ARexx/UnDMS.dopus5’ filename ←↩

portname
33 if function = ’Test’ then command User4 filename
34 if function = ’Container’ then command scandir new container filename
35 exit

What it all means:

Lines:
1-15 Mandatory ARexx comment with version information, what it does and

what it requires.
16 As shown in the previous module examples, Opus will pass along these

five parameters to the module: Opus ARexx port, the function, the
SOURCE handle, the DESTINATION handle and any arguments, (in this
case the name of the file whose popup menu we used).

17-18 We address the passed portname, (usually DOPUS.1), and enable
results.

21 As shown in the previous examples, when Opus first calls the module,
it will call it with a function of ’init’ to initialise the commands
that you’re adding.

DOpusARexxTute 67 / 128

23 This ’dopus command’ line adds the command ’Browse’, the program
that will be called is ’General.dopus5’, (that is, the one above).
We will require the SOURCE handle, the text that will appear in the
menus is ’Browse...’ and we only want it to appear for files with a
filetype ID of ’aLHA’ and ’aLZX’, (yours are probably ’LHA’ and ’LZX’
unless you’ve changed them like I have). The ’private’ flag
specifies that this command will not appear in the internal command
list.

24 Same as for line 23 except here we add the command ’GetDir’.
25 In this line we add the command ’UnDMS’ but only for a filetype ID

of ’aDMS’, (a DMS archive).
26 This line is where we add the ’Test’ command to all filetype IDs

that match the pattern ’a???’, on my system this is all archive
filetypes.

27 This adds the ’Container’ command to all left-out files/dirs on the
Desktop.

28 We exit because the ’init’ function is finished.

The next time this module will be called, will be when the user has chosen
a menuitem from a file/dir popup menu that corresponds to one which we have
added, therefore:

30 ’Browse...’ was selected from the menu over a LhA or LZX archive,
this line will call Edmund’s ArcDir.dopus5 script passing along the
command ’BROWSE’, the Opus port name, the filename and the handle of
the lister.

31 ’GetDir...’ was selected from the menu over a LhA or LZX archive,
this line will call Edmund’s ArcDir.dopus5 script passing along the
command ’GETDIR’, the Opus port name, the filename and the handle of
the lister.

32 ’UnDMS...’ was selected from the menu over a DMS archive, this line
will call Edmund’s UnDMS.dopus5 script passing along the filename
and the Opus port name.

33 ’Test...’ was selected from the menu over any archive, this line
will call the ’User4’ function for that filename, (the ’Test
archive’ function in my filetypes).

34 ’Open Container’ was selected from a left-out popup menu, this will
call the Opus ScanDir command. The ’file new container’ parameters
specify that: a new lister will open in that files home directory
with that file selected.

35 We exit.

1.59 Magellan II ARexx Tutorial: A Simple Custom Handler for a Lister

To my mind the difference between a Custom Handler and a Module could be
given as:

A Custom Handler allows you to ’capture events’ from a lister or an
AppIcon and act upon them.

A Module is a way of adding things to the system. As Helmut has said in
his ’C’ tutorial: ’A module is just a library of Opus routines’.

You can have a module that includes a custom handler, Leo Davidson’s

DOpusARexxTute 68 / 128

PrintAppIcon script is a demonstration of this, but each is a seperate
entity within the script.

An event happens every time you select something from a toolbar, popup
menu, do a Drag’n’Drop, and a few other things.

Custom handlers usually open their own lister or AppIcon, and then they
wait for you to do something, or they can be attached to an already open
lister.

Edmund Vermeulen’s ArcDir script, (available from Aminet), is an excellent
example of what can be done using custom handlers.

Below is a really simple example of a custom handler for a lister, in fact
it doesn’t do anything useful at all, you can just select files and use Opus
commands, nothing will happen.

Every action you perform on the lister will be reported in a console
window.

1/*
2 $VER: SLCH.dopus5 1.0 (26.9.98)
3Simple Lister custom handler
4*/
5signal on error
6signal on syntax
7signal on halt
8signal on break_c
9

10address DOPUS.1
11options results
12options failat 11
13
14dopus front
15
16if ~show(’l’,’rexxsupport.library’) then
17 call addlib(’rexxsupport.library’,,-30)
18
19call open(’window’,’CON:0/12/640/240/SLCH.dopus5’)
20
21lister new
22handle = result
23lister read handle ’SYS:’ force
24lister wait handle
25call openport(’SLCH-handler’)
26lister set handle handler ’SLCH-handler’ subdrop quotes
27
28/* We are going to trap everything */
29dopus addtrap ’*’ ’SLCH-handler’
30
31do while event ~= ’inactive’
32 if waitpkt(’SLCH-handler’) then do
33 packet = getpkt(’SLCH-handler’)
34 if packet ~= ’00000000’x then do
35 event = getarg(packet,0)
36 handle = getarg(packet,1)
37 name = getarg(packet,2)
38 user = getarg(packet,3)

DOpusARexxTute 69 / 128

39 pathstr = getarg(packet,4)
40 arguments = getarg(packet,5)
41 qualifier = getarg(packet,6)
42 deststr = getarg(packet,7)
43
44 call writeln(’window’,’--------------------’)
45 call writeln(’window’,’Arg0 (event) =’ event)
46 call writeln(’window’,’Arg1 (handle) =’ handle)
47 call writeln(’window’,’Arg2 (name) =’ name)
48 call writeln(’window’,’Arg3 (user) =’ user)
49 call writeln(’window’,’Arg4 (path) =’ pathstr)
50 call writeln(’window’,’Arg5 (arguments) =’ arguments)
51 call writeln(’window’,’Arg6 (qualifier) =’ qualifier)
52 call writeln(’window’,’Arg7 (destination) =’ deststr)
53 end
54 call reply(packet,0)
55 end
56end
57
58/* remove all traps for my handler */
59error:
60syntax:
61halt:
62break_c:
63dopus remtrap ’*’ ’SLCH-handler’
64call closeport(’SLCH-handler’)
65if rc = 0 then call delay(100)
66call close(’window’)
67if rc ~= 0 then do
68 text = ’Error: ’rc’, ’errortext(rc)’ in line ’sigl’.’
69 dopus request ’"’text’" OK’
70 end
71exit

Line:
1 - 4 The obligatory ARexx comment.
5 - 8 If anything goes wrong with the script we’ll jump to the error

handling routine down at line 59.
10 - 12 Address the Opus ARexx port, enable ARexx results and set the failat

limit at 11.
14 Move the Opus screen/window to the front.
16 - 17 If the rexxsupport.library isn’t loaded then we load it, we need the

openport, closeport and delay commands it contains.
19 Open our output window.
21 - 24 Open the lister, assign handle to it’s handle, read in the SYS:

directory and wait until it’s finished.
25 Call the openport command to open a system message port called

SLCH-handler.

NOTE: Message port names are case-sensitive, you will now need to refer to
this message port exactly as typed.

26 Set the handler to the lister using the lister set handler command.
29 We are going to trap every event so we use the ’*’ to signify this.

Otherwise we could trap specific events by specifying them, for
example: dopus addtrap ’Copy’ ’SLCH-handler’

31 We enter a DO loop and will only exit when the event equals

DOpusARexxTute 70 / 128

’inactive’, which means the lister has been closed.
32 This is where the script normally ’parks’ while waiting for something

to happen, as soon as it recieves a message packet on our port this
statement will become true and the script will continue.

33 We get the message packet in variable packet.
34 - 52 If it isn’t a null packet we get the various arguments from it

assigning them to variables. We then write them to our output
console.

54 We reply to the message packet, THIS IS IMPORTANT YOU MUST DO IT!!

59 - 62 If we happen to have recieved some kind of error then we would have
jumped to one of these labels, otherwise when the lister is closed
we’ll exit the DO loop and progress through here anyway.

63 We remove all the traps that we placed upon this handler.
64 Call the closeport command to close our message port.
65 If we exit normally then we’ll delay for two seconds.
66 Close our output console.
67 - 70 If we didn’t exit normally, (error condition), then we format the

error information into a text string and display it in a requester.
71 Exit.

1.60 Magellan II ARexx Tutorial: A Simple Custom Handler for an AppIcon

The following example of an AppIcon custom handler was the simplest that I
could think of, (Sorry :) that might be semi-useful. What it does is put an
AppIcon on the Opus Desktop, any LhA archive that you drop onto this AppIcon
will be extracted to a directory of your choice.

NOTE: This script relies on the fact that your filetype ID for LhA archives
will be ’LHA’. If it isn’t, then you will need to change the script
to suit your ID.

1/*
2VER: LhAAppIcon.dopus5 1.0 (1.9.98)
3Call as: LhAAppIcon.dopus5 {Qp}
4*/
5options results
6parse arg port .
7
8lf = ’0a’x
9LhAID = ’LHA’ /* Change this line to suit your ←↩

LhA filetype ID */
10iconname = ’DOpus5:Icons/filetypes/Archive’ /* Change to use a different icon ←↩

*/
11output = ’RAM:’
12if port = ’’ then port = ’DOPUS.1’
13address value port
14
15If ~Show(’L’,’rexxsupport.library’) then call addlib(’rexxsupport.library ←↩

’,0,-30,0)
16
17call openport(’LhAAppIcon-handler’)
18appmenu.count = 1
19appmenu.0 = ’Config’

DOpusARexxTute 71 / 128

20dopus addappicon ’LhAAppIcon-handler’ "’LhAAppIcon’" 1 icon iconname info quotes ←↩
close local menu appmenu.

21iconhandle = result
22flag = 0
23do while flag = 0
24 if waitpkt(’LhAAppIcon-handler’) then do
25 packet = getpkt(’LhAAppIcon-handler’)
26 arg0 = getarg(packet,0)
27 arg1 = getarg(packet,1)
28 arg2 = getarg(packet,2)
29 arg3 = getarg(packet,3)
30 arg4 = getarg(packet,4)
31 call reply(packet,0)
32 if arg0 = ’menu’ & arg2 = 0 then call Config
33 if arg0 = ’info’ then do
34 text = ’LhAAppIcon 1.0 (1.9.98)’||lf||lf||’G’’day :)’
35 dopus request ’"’text’" OK’
36 end
37 if arg0 = ’dropfrom’ then call WeGotOne
38 if arg0 = ’close’ then flag = 1
39 if arg0 = ’removed’ then flag = 2
40 end
41end
42if flag~=2 then dopus remappicon iconhandle
43call closeport(’LhAAppIcon-handler’)
44exit
45
46Config:
47valid = 0
48do while valid = 0
49 text = ’"Please enter a path to extract files to:" 30 "’output||’" OK|Cancel’
50 dopus getstring text
51 if dopusrc = 0 | result = ’’ then result = ’RAM:’
52 if pos(right(strip(result,,’"’),1),’:/’) > 0 then
53 if exists(result) then do
54 valid = 1
55 output = result
56 end
57end
58return
59
60WeGotOne:
61if arg2 = ’’ then return
62lister query arg3 path
63path = result
64dopus setappicon iconhandle busy on
65files = arg2
66do while files ~= ’’
67 parse var files’"’file’"’ files
68 file = strip(path,,’"’)||strip(file,,’"’)
69 dopus getfiletype ’"’file’"’ ID
70 if result = LhAID then
71 address command ’LhA >NIL: x "’file’" ’output
72end
73dopus setappicon iconhandle busy off
74return

DOpusARexxTute 72 / 128

Line:
1 - 4 The obligatory ARexx comment containing such useful information as

the script version and how to call it.
5 Enable ARexx results.
6 Parse the arguments for the Opus port name.
8 Set lf to the linefeed character.
9 Set LhAID to the filetype ID for LhA archives.

10 Set iconname to the path and filename of the icon that will appear
on the Desktop.

11 Set output to the default output path of RAM:
12 If they forgot to give us a port then we set it to the default port

’DOPUS.1’.
13 Address the Opus ARexx port.
15 If the rexxsupport.library isn’t loaded, load it.
17 We open the message port for our handler, it’s name will be

’LhAAppIcon-handler’.
18 - 19 We set up the stem variable that is going to be used for the AppIcon

popup menu. We set appmenu.count to the number of menuitems we will
have, in this case 1. Stem variables start counting from 0, so the
menuitem will be appmenu.0 which we have set to ’Config’.

20 The dopus addappicon command adds the AppIcon to the Desktop and
assigns the handler to it. It breaks down as follows:

dopus addappicon - The Opus ARexx command.
’LhAAppIcon-handler’ - The name of the message port that we opened

earlier, any events that occur to the AppIcon
will send messages to this port.

"’LhAAppIcon’" - This is the label that will appear under the
icon.

1 - This is an ID for the icon, it will be
returned in messages sent to the handler.

icon iconname - This is telling Opus to use the icon imagery
that we set earlier in variable iconname, line
10.

info - The popup menu Information item will be
enabled.

quotes - All file arguments will be enclosed in quotes.
close - Display Close in the popup menu instead of the

normal Open.
local - The AppIcon will only appear on the Opus

Desktop and not the normal Workbench screen.
menu appmenu. - This tells Opus to add the menuitems found in

the stem variable appmenu., which we specified
earlier, to the AppIcon popup menu.

21 A handle will be returned, (much the same as opening a lister), which
we assign iconhandle to.

22 - 23 We set flag to 0, and enter a DO loop in which we cycle around until
flag doesn’t equal 0.

24 This is where the script normally ’parks’ while waiting for a message
packet. When we recieve a packet, this if...then statement will
become true and the script will continue.

25 - 30 We get the message packet in a variable called packet and then get
the various arguments from it.

Arg0 - <event> string identifying the event
Arg1 - <ID> ID specified in the addappicon command

DOpusARexxTute 73 / 128

Arg2 - <data> filenames/menu ID/other information
Arg3 - <handle> source lister handle - if applicable
Arg4 - "icon" string identifying this as an "icon" event

31 Reply to the message packet, YOU MUST DO THIS!!!
32 If the event was ’menu’ and the menuitem was 0 then call the Config

routine.
33 - 36 It was an ’info’ event so we set text equal to some text and display

it in a requester.
37 Someone dropped something on our icon so we call the WeGotOne

routine.
38 The user picked ’Close’ from the popup menu, so we set flag to 1.

The next time around the DO loop we will exit.
39 The event ’removed’ means that Opus has quit, so we set flag to 2,

the next time around the DO loop we will exit.
40 End of the ’if waitpkt....’.
41 End of the ’do while....’.
42 We’ve exited the DO loop, either by quitting Opus or Closing our

AppIcon. If it was via the ’Close’ menuitem then we issue a
dopus remappicon command to remove our AppIcon from the Desktop.

43 - 44 Close our message port and exit the script.
46 Sub-routine Config label.
47 - 48 Set valid to 0 and enter a DO loop until valid doesn’t equal 0.
49 - 50 Set text to our display text and display it in a string requester.
51 If the user hit Cancel or entered no text then set it to the default

directory of RAM:.
52 Strip the quotes off the front and back of the string and see if it’s

rightmost character is a ’:’ or a ’/’.
53 - 56 If it was we check to see whether the path actually exists and if it

does set valid to 1 and output to our new directory.
57 End of the ’do while valid....’ loop, we’ll keep going around until

we get a valid directory from the user.
58 Return to the main handler loop.
60 Sub-routine WeGotOne label.
61 If Arg2 was empty, (no files), then we return immediately.
62 - 63 We ask for the path of the lister handle returned in Arg3, and set

path to it.
64 Set the AppIcon’s state to busy, so it will become ghosted on the

Desktop and will ignore any more files dropped on it.
65 Set files to the list of files in Arg2.
66 Enter a DO loop while files is not empty.
67 Parse the first filename from files returning the rest of the string

back to files, for example:

files = "foo.lha" "bar.lha" "why.lha"
After: parse var files’"’file’"’ files

file = "foo.lha"
files = "bar.lha" "why.lha"

68 Set file to the path and the filename without the leading and
trailing quotes.

69 Get the filetype ID of the file.
70 - 71 If the ID equals the ID for LhA archives that we set back in line 9,

then call the LhA archiver to extract the filename to the path set
in variable output.

72 Loop around to the next file.
73 All files are done, set the AppIcon state back to idle.

DOpusARexxTute 74 / 128

74 Return to the main handler loop.

As you can see, it isn’t very hard. You could expand on this by adding
support for different archivers, saving the output directory in a config
file, etc.

To add a different archiver is very easy, for example let’s add LZX
archives:

Find this line:

LhAID = ’LHA’

and add this after it:

LZXID = ’LZX’ /* or whatever your filetype ID for LZX is */

then find this line:

address command ’LhA >NIL: x "’file’" ’output

and add these two after it:

if result = LZXID then
address command ’LZX >NIL: x "’file’" -d ’output

Done!

1.61 Magellan II ARexx Tutorial: Improving the inbuilt commands

One thing that may not become immediately obvious is the fact that all the
internal Opus commands can be replaced by your own versions of them.

You can do this by writing your own module. Using the Opus SDK, (Software
Developers Kit), you can write it in a language such as ’C’, ’E’, Assembler,
or BASIC. You can also do it by using ARexx.

It is just the same as writing any normal ARexx module, you just specify
your command name to be the same as one of the Opus internal ones.

Naming your commands the same as Opus ones, causes them to override the
internal commands.

For example, you could improve the operation of the Copy command so that
when it tried to copy over a file with the same name, it could prompt you
with the option to rename the file, (instead of just the normal options of
Skip and Replace), then proceed with the copy as normal.

The example below was initially a script in the DOpus5:ARexx/ directory,
written by Sylvain Bourcier, <booze@videotron.ca>, I rewrote it so that it
was a module replacing the internal versions of the Root and Parent command
with slightly more functional ones.

DOpusARexxTute 75 / 128

If you want to use this module on your computer, simply click on this
button and it will be copied to your DOpus5:Modules/ directory.

Since it replaces existing Opus commands, there’s no need to make any
special buttons. The next time you use Root or Parent in the root directory
of a device, you will be presented with the device list.

/*
$VER: RootParent.dopus5 1.2 (12.8.98)
Replaces internal Root and Parent commands with versions that will display
the Device List if in the root of a device.

USAGE: Copy it to DOpus5:Modules/ It will replace the existing
Root and Parent command functions.

*/
options results
parse arg port func srce dest args .
address value port

if func = ’init’ then do
dopus command "Root" program "RootParent" desc "Root/Devices" template "UNSELECT ←↩

/S"
dopus command "Parent" program "RootParent" desc "Parent/Devices" template " ←↩

UNSELECT/S"
exit

end

lister query srce path
path = result
if upper(args) = ’UNSELECT’ then command source srce wait none
if right(path,1) = ’:’ then command source srce wait devicelist full

else command source srce original func
exit

Here’s another simple one for those people still using the Trashcan. An
internal DeleteTC command will be added, using this instead of Delete will
cause the selected entries to be moved to SYS:Trashcan/.

And we also add an EmptyTC command which you can put into the User Menus
as ’Empty Trashcan’, just like the good ol’ days ;-)

/*
$VER: Delete.dopus5 1.0 (8.9.98)
When you hit Delete, will copy of selected entries to the Trashcan before
deleting them.

*/
options results
parse arg port func srce dest args .
address value port

if func = ’init’ then do
dopus command "DeleteTC" program "Delete" desc "Move selected to Trashcan"
dopus command "EmptyTC" program "Delete" desc "Empty the trash"
exit
end

if func = ’DeleteTC’ then command source srce original move ’TO SYS:Trashcan’

DOpusARexxTute 76 / 128

if func = ’EmptyTC’ then command original delete ’SYS:Trashcan/#? QUIET’
exit

1.62 Magellan II ARexx Tutorial: Cloning source listers

Here’s a script written by Gary Gagnon way back in 1995, (I can’t even
remember back that far). It clones any listers that are currently in state
SOURCE.

So if you have a Source lister with path ’RAM:’ and one with path ’HD0:’,
after running this script you’ll end up with two listers open for each of
those paths.

/*
$VER: CloneSRCE.dopus5 1.0 Jun-01-95
Written by: Gary Gagnon (garyg@wimsey.com)
Purpose: ARexx script to clone SRCE lister(s)
Syntax: From function editor "ARexx DOpus5:ARexx/Same.dopus5 {Qp}"
Note: I keep my DOpus5 ARexx scripts in DOpus5:ARexx
Note: If no listers flagged as SRCE, nothing is opened

*/

options results
parse arg portname
address value portname

’lister query source’
srclist = result

if result = ’RESULT’ then
exit 0

do forever
if srclist = ’’ then leave

/* the following command line does a little ARexx magic */
/* try this with any other language - it won’t be as simple! */

parse var srclist curlist srclist

/*
if you couldn’t figure it out, it extracts the first value from
the string and moves the remaining values (if any) back to the
same string. This is what allows this to duplicate all SRCE
listers within this simple loop (and also makes sure it won’t be
an endless loop). Languages without type checks can be nice!

*/

’lister new’
newlist = result
’lister copy’ curlist newlist

end

Let’s modify it a bit :)

DOpusARexxTute 77 / 128

/*
$VER: Clone.dopus5 1.0 (23.9.98)

Original by: Gary Gagnon (garyg@wimsey.com)
Purpose: ARexx script to clone SRCE/DEST lister(s)
Syntax: From function editor "ARexx DOpus5:ARexx/Same.dopus5 {Qp} <SOURCE| ←↩

DEST>

*/

options results
parse arg portname state .
address value portname
if state = ’’ then exit
if pos(upper(state),’SOURCE DEST’) = 0 then exit

’lister query ’state
srclist = result

if result = ’RESULT’ then
exit 0

do forever
if srclist = ’’ then leave

/* the following command line does a little ARexx magic */
/* try this with any other language - it won’t be as simple! */

parse var srclist curlist srclist

/*
if you couldn’t figure it out, it extracts the first value from
the string and moves the remaining values (if any) back to the
same string. This is what allows this to duplicate all SRCE
listers within this simple loop (and also makes sure it won’t be
an endless loop). Languages without type checks can be nice!

*/

’lister new’
newlist = result
’lister copy’ curlist newlist

end

Now it will clone Source or Destiantion listers depending on whether you
call it with the SOURCE or DEST parameter.

1.63 Magellan II ARexx Tutorial: Finding duplicated files in two listers

Here’s another script of Edmund’s, (workaholic isn’t he), it compares the
names of files/dirs in two listers and leaves the duplicated ones selected.

/*
$VER: DupeCheck.dopus5 1.1 (7.5.96)

DOpusARexxTute 78 / 128

Written by Edmund Vermeulen (edmundv@grafix.xs4all.nl).

ARexx script for Directory Opus 5 to select all entries in the source
lister that already exist in the destination lister (a.k.a. dupes).

Function : ARexx DOpus5:ARexx/DupeCheck.dopus5 {Qp}

*/

parse arg portname
if portname = ’’ then

portname = ’DOPUS.1’
address value portname

options results
options failat 21

lister query source
if rc > 0 then do

dopus request ’"No source selected." OK’
exit
end

parse var result srchandle .

lister query dest
if rc > 0 then do

dopus request ’"No destination selected." OK’
exit
end

parse var result desthandle .

lister set srchandle busy on
lister set desthandle busy on

lister query desthandle entries stem entry.
do i = 0 to entry.count - 1

lister select srchandle ’"’entry.i’"’ on
end

lister refresh srchandle
lister set srchandle busy off
lister set desthandle busy off
exit

There’s only four lines that do all the work, all the rest just make sure
there’s a source and destination lister and sets their state to busy while
we’re working.

lister query desthandle entries stem entry.
do i = 0 to entry.count - 1

lister select srchandle ’"’entry.i’"’ on
end

All we do is get a list of all entries in a stem variable and then loop
around selecting them in the source lister, if the name exists it will be
selected. Simple!

DOpusARexxTute 79 / 128

1.64 Magellan II ARexx Tutorial: Adding a bit of Win95

It’s a sorry day when we copy a MicroSoft idea, but here we go.

/*
$VER: CutNPaste.dopus5 1.1 (30.10.97)

*/

/* Cut & Paste module - Adds "Cut" and "Copy" */
/* to file pop-up menus and "Paste" to lister */
/* pop-up menus. Nothing is done until you */
/* Paste when the appropriate Copy or Move */
/* command is issued. Andrew Dunbar Oct 1997 */

parse arg portname function source dest arguments
address value portname
options results

if function = ’init’ then do
cnptypes = ’type drawer type tool type project type trash’
dopus command ’Clip-Copy’ program ’CutNPaste’ ext ’Copy’ private cnptypes
dopus command ’Clip-Cut’ program ’CutNPaste’ ext ’Cut’ private cnptypes
dopus command ’Clip-Paste’ program ’CutNPaste’ ext ’Paste’ private type lister

end
else if function = ’Clip-Cut’ then address command ’echo >T:clipcnp cut’arguments
else if function = ’Clip-Copy’ then address command ’echo >T:clipcnp copy’ ←↩

arguments
else if function = ’Clip-Paste’ then do
lister query source path
pastepath = result
if open(’cnpfile’,’T:clipcnp’,’r’) then do

cnpinfo = readln(’cnpfile’)
call close(’cnpfile’)
parse var cnpinfo cmd srcfile
srcfile = trim(srcfile)
if srcfile ~= ’’ then do

if cmd = ’copy’ then command copy ’name=’srcfile ’to=’pastepath
else if cmd = ’cut’ then command move ’name=’srcfile ’to=’pastepath

lister wait source
lister read source pastepath force

end
else dopus request ’’’Paste: Clipboard invalid’’’

end
else dopus request ’’’Paste: Nothing in clipboard’’’

end
exit

After you put this into the DOpus5:Modules/ directory, the popup menus on
files of the type drawer, tool, project and trach will have two menu items
called ’Copy’ and ’Cut’. Lister will inherit a popup menu item called
’Paste’.

When you select either Cut or Copy from a file’s popup menu it’s name will
be echoed to a file in T: along with the function, cut or copy.

When you select Paste from a lister’s popup menu, this file will be opened
if it exists, (an error requester iss displayed if it doesn’t), and it’s
contents read. If the action was to Copy then the file is copied to the

DOpusARexxTute 80 / 128

lister, if it was Cut then the file will be moved to the lister.

1.65 Magellan II ARexx Tutorial: Adding a directory tree function

Here’s a short script I knocked up after being inspired by someone else,
you know who you are ;-)

If any of you out there had Directory Opus V4, then you’d know you were
able to display a ’tree’ of all the directories for a particular drive. You
could click on one to have that directory displayed.

While not as asthetically pleasing as the version Jon incorporated into
DO4, this version does the same basic thing, that is, it displays a tree of
directories for a particular device and allows you to go to one by double
clicking on it.

1/*
2$VER: DirTree.dopus5 0.2 (7.10.98)
3
4Call as: ARexx DOpus5:ARexx/DirTree.dopus5 [REGEN] <Device>
5
6 Flags Run Async
7
8 where: REGEN = causes a new directory tree file to be created.
9 Device = the device, eg. HD0:, SD0:, DF0:, etc
10
11Example: DirTree.dopus5 HD0:
12
13*/
14options results
15parse arg regen device
16if device = ’’ then device = regen
17regen = regen ~= device
18
19address ’DOPUS.1’
20if ~show(’l’,’rexxsupport.library’) then
21 call addlib(’rexxsupport.library’,0,-30)
22
23device = strip(strip(device,,’"’))
24oldcd = pragma(’d’,device)
25device = pragma(’d’,oldcd)
26if right(device,1) ~= ’:’ then do
27 dopus request ’"Specify DEVICE only, eg. ’’HD0:’’" OK’
28 exit
29 end
30tfile = left(device,pos(’:’,device))||’.dirtree’
31if regen then call delete(tfile)
32
33if ~exists(tfile) then do
34 address command ’List ’device’ DIRS ALL LFORMAT "%P%N" >T:dirtree.temp’
35 address command ’Sort T:dirtree.temp ’tfile
36 ’command protect ’tfile’ set H’
37 call delete(’T:dirtree.temp’)
38 end
39

DOpusARexxTute 81 / 128

40if ~open(’dirtree’,tfile,’r’) then do
41 dopus request ’"ERROR: Unable to open ’’tree’’ file." OK’
42 exit
43 end
44else do
45 totlines = 0
46 do while ~eof(’dirtree’)
47 call readln(’dirtree’)
48 totlines = totlines + 1
49 end
50 call seek(’dirtree’,0,’b’)
51 nlength = length(totlines)
52 end
53
54lister new invisible mode name
55handle = result
56lister set handle field off
57lister set handle toolbar
58lister set handle busy on
59info.NAME = copies(’0’,nlength)
60info.DISPLAY = device
61lister addstem handle info.
62lister refresh handle full
63lister set handle value info.NAME device
64lister set handle visible on
65
66linenum = 1
67do while ~eof(’dirtree’)
68 dirline = readln(’dirtree’)
69 path = dirline
70 if pos(’:’,dirline) ~= 0 then parse var dirline dev ’:’ dirline
71 if dirline ~= ’’ then do
72 linenum = linenum + 1
73 if pos(’/’,dirline) ~= 0 then do
74 howmany = 0
75 do while pos(’/’,dirline) ~= 0
76 parse var dirline fore’/’dirline
77 howmany = howmany + 1
78 end
79 dirline = copies(’ ’,3 * howmany)||dirline
80 end
81 dirline = ’ ’||dirline
82 do i = 1 to length(dirline) by 3
83 if substr(dirline,i + 3,1) ~= ’ ’ | substr(dirline,i + 4,1) ~= ’ ’ then ←↩

do
84 dirline = overlay(’+--’,dirline,i)
85 leave
86 end
87 end
88 info.NAME = right(linenum,nlength,’0’)
89 info.DISPLAY = dirline
90 lister addstem handle info.
91 lister refresh handle
92 lister set handle value info.NAME path
93 end
94end
95call close(’dirtree’)

DOpusARexxTute 82 / 128

96lister set handle busy off
97
98call openport(’DirTree-handler’)
99lister set handle handler ’DirTree-handler’

100
101do until event = ’inactive’
102 if waitpkt(’DirTree-handler’) then do
103 packet = getpkt(’DirTree-handler’)
104 if packet ~= ’00000000’x then do
105 event = getarg(packet,0)
106 name = getarg(packet,2)
107 if event = ’doubleclick’ then do
108 lister query handle value name
109 path = result
110 lister set handle handler
111 lister set handle toolbar toolbar
112 lister wait handle quick
113 lister read handle path force
114 end
115 call reply(packet,0)
116 end
117end
118
119call closeport(’DirTree-handler’)
120exit

When run for the first time on a device, there will be a delay while every
directory is listed and then sorted. This file is then save to the root of
the device for quick access next time, it will be named as
’<device>.dirtree’, and will have the ’h’ protection bit set so as to not
be displayed if you have the ’Hidden’ option set for your listers.

Some highlights of the script are:

Lines: 54 - 64 We open a new lister initially invisible while we set up
it’s toolbar and field titles to off. We set it’s state
to busy, add the first entry (the device), then refresh it
and make it visible.

66 - 87 These lines just read the file a line at a time and format
them ready for the lister.

88 - 92 We set the compound variable info.NAME to equal the line
number in the file, (so each entry is individual), set the
reformatted text to the compound variable info.DISPLAY and
add them to the lister display using the lister addstem
command. Because we have specified a DISPLAY field this
will be what is displayed in the lister. Then we associate
the NAME field with a value, in this case the path of the
directory using the lister set value command.

101 - 117 This is our custom handler routine which just waits for a
doubleclick event to happen. When it does, we query the
value of the name/value pair we made previously, this gives
us back the path for that entry. Set the handler to null,
this causes the handler for this lister to become inactive
and thus terminate. Set the toolbar to the default toolbar,
usually called ’toolbar’ in the DOpus5:Buttons directory.
Wait until the lister is idle, and then force the lister to
read in the requested path.

DOpusARexxTute 83 / 128

All very simple :)

Clicking this button will copy it to your DOpus5:ARexx/ directory.

1.66 Magellan II ARexx Tutorial: An Opus v4 CopyWin replacement

Leo’s script below, emulates the function of the ’CopyWin’ ←↩
function that

was available in Opus v4. See the comments at the start of the script for
the usage of it.

The script checks for existance of a SOURCE and DESTINATION lister,
if it can’t find either then it exits with an error message. If both exist, then
it finds the path of the SOURCE lister and tells the DESTINATION lister to
read it in.

You could eliminate the steps where it finds the SOURCE path and reads
it into the DESTINATION lister by replacing them with the

lister copy
command.

So this:

lister query source_handle.0 path
source_path = RESULT
lister read dest_handle.0 ’"’||source_path||’"’

could be replaced by this:

lister copy source_handle.0 dest_handle.0

/* WinCopy for Directory Opus 5.
by Leo ’Nudel’ Davidson for Gods’Gift Utilities
email: leo.davidson@keble.oxford.ac.uk www: http://users.ox.ac.uk/~kebl0364

$VER: WinCopy.dopus5 1.4 (26.12.95)

NOTE: This script _requires_ DOpus v5.11 or above.
NOTE: DOpusFuncs is an assembler version of this (and other) scripts.
NOTE: This script does *NOT* do the same thing as Gary Gagnon’s

"CloneSRCE.dopus5" or "same.dopus5", read on...

This script will copy the source lister to the destination lister,
like the old CopyWin command in DOpus4.

If you wish to open a _new_ lister which is a copy of the source
one (as apposed to turning an existing lister into a copy of the
source), you should use Gary Gagnon’s "CloneSRCR.dopus5" script,
which was included in the official DOpus v5.11 update as
"DOpus5:ARexx/same.dopus5". Gary’s script is also able to clone
multiple source listers at once.

Call as:

DOpusARexxTute 84 / 128

--
ARexx DOpus5:ARexx/WinCopy.dopus5 {Qp}
--
Turn off all switches.

*/

options results
options failat 99
signal on syntax;signal on ioerr /* Error trapping */
parse arg DOpusPort
DOpusPort = Strip(DOpusPort,"B",’" ’)

If DOpusPort="" THEN Do
Say "Not correctly called from Directory Opus 5!"
Say "Load this ARexx script into an editor for more info."
EXIT
END

If ~Show("P",DOpusPort) Then Do
Say DOpusPort "is not a valid port."
EXIT
End

Address value DOpusPort

lister query source stem source_handle.

IF source_handle.count = 0 | source_handle.count = "SOURCE_HANDLE.COUNT" Then Do
dopus request ’"You must have a SOURCE lister!" OK’
EXIT
End

lister query dest stem dest_handle.

IF dest_handle.count = 0 | dest_handle.count = "DEST_HANDLE.COUNT" Then Do
dopus request ’"You must have a DESTINATION lister!" OK’
EXIT
End

lister query source_handle.0 path
source_path = RESULT
lister read dest_handle.0 ’"’||source_path||’"’

syntax:;ioerr: /* In case of error, jump here */
EXIT

1.67 Magellan II ARexx Tutorial: An Opus v4 SwapWin replacement

Here are two different versions of the ’SwapWin’ function, that was
available in Opus v4, presented below. Each one uses a different approach
to do the same thing.

Leo’s, the top one, simply gets the path from each lister and tells the
other lister to read it in. This retains the current lister format, unless
the paths read have specific formats.

DOpusARexxTute 85 / 128

Edmund takes the approach of just getting each listers position and then
sending that position to the other lister, so the listers effectively swap
positions on the screen. The only thing is that if your destination lister
was setup to show filetype in the format and the source wasn’t, when you
swap positions the opposite will now be true.

With Leo’s script he asks for the handle of the SOURCE and
DESTINATION lister, if either one of those don’t exist then the script
will exit, giving you an error message.

Edmund’s, on the other hand, asks for the handles of all listers
currently open, if there is less than two the script will end. It then checks
to see if there are both a SOURCE and DESTINATION lister, if either or
both are not available, then the first two from the list of handles we asked
for are used as the SOURCE and DESTINATION respectively. So the only
reason it should exit is because you have less than two listers open.

---------------------------------------8<---------------------------------------
/* WinSwap for Directory Opus 5.

by Leo ’Nudel’ Davidson for Gods’Gift Utilities
email: leo.davidson@keble.oxford.ac.uk www: http://users.ox.ac.uk/~kebl0364

$VER: WinSwap.dopus5 1.4 (26.12.95)

NOTE: This script _requires_ DOpus v5.11 or above.
NOTE: DOpusFuncs is an assembler version of this (and other) scripts.

This script will swap around your source and destination listers,
like the old swap command in DOpus4.

Obviously, in DOpus5 it is possible to simply move the two lister
windows, but somethimes this isn’t desireable. For example, when they
are locked in place via the option in the pull-off menu; when you’re
too lazy to move the windows; or when the two windows are positioned
such that moving them would be difficult or would make a mess.

Call as:
--
ARexx DOpus5:ARexx/WinSwap.dopus5 {Qp}
--
Turn off all switches.

*/

options results
options failat 99
signal on syntax;signal on ioerr /* Error trapping */
parse arg DOpusPort
DOpusPort = Strip(DOpusPort,"B",’" ’)

If DOpusPort="" THEN Do
Say "Not correctly called from Directory Opus 5!"
Say "Load this ARexx script into an editor for more info."
EXIT
END

If ~Show("P",DOpusPort) Then Do

DOpusARexxTute 86 / 128

Say DOpusPort "is not a valid port."
EXIT
End

Address value DOpusPort

lister query source stem source_handle.

IF source_handle.count = 0 | source_handle.count = "SOURCE_HANDLE.COUNT" Then Do
dopus request ’"You must have a SOURCE lister!" OK’
EXIT
End

lister query dest stem dest_handle.

IF dest_handle.count = 0 | dest_handle.count = "DEST_HANDLE.COUNT" Then Do
dopus request ’"You must have a DESTINATION lister!" OK’
EXIT
End

lister query source_handle.0 path
source_path = RESULT
lister query dest_handle.0 path
dest_path = RESULT

lister read source_handle.0 ’"’||dest_path||’"’
lister read dest_handle.0 ’"’||source_path||’"’

syntax:;ioerr: /* In case of error, jump here */
EXIT

---------------------------------------8<---------------------------------------

/*
$VER: SwapListers.dopus5 1.0 (30.1.96)
Written by Edmund Vermeulen (edmundv@grafix.xs4all.nl).

ARexx script for Directory Opus 5 to swap the source and destination
listers around. If there is no source and/or destination lister it will
take the next other lister.

It takes a different (better :-) approach then Leo’s WinSwap script. It
simply swaps the lister positions around, instead of the directory paths.

Function : ARexx DOpus5:ARexx/SwapListers.dopus5 {Qp}

*/

parse arg portname .
if portname = ’’ then /* in case they forgot */
portname = ’DOPUS.1’

address value portname
options results

lister query all stem handle.
if rc > 0 | handle.count < 2 then

exit

DOpusARexxTute 87 / 128

lister query source
if rc = 0 then do

parse var result srchandle .
do i = 0 to handle.count - 1

if handle.i = srchandle then do
handle.i = handle.0
handle.0 = srchandle /* make 0 the source handle */
leave
end

end
end

lister query dest
if rc = 0 then do

parse var result desthandle .
if handle.0 = desthandle then

handle.0 = handle.1
handle.1 = desthandle /* make 1 the destination handle */
end

do i = 0 to 1
lister query handle.i position
pos.i = result
end

lister set handle.0 position pos.1
lister set handle.1 position pos.0
exit

---------------------------------------8<---------------------------------------

1.68 Magellan II ARexx Tutorial: TroubleShooting

OK, you’ve written some scripts but they don’t seem to work, ←↩
there are a

few methods or tools you can use for finding out what’s wrong.

The simple things

ARexx error codes

ARexx tracing

The Opus CLI

1.69 Magellan II ARexx Tutorial: TroubleShooting - The simple things

ARexx server

DOpusARexxTute 88 / 128

The very first thing you should check is: Is the Arexx server running?

That is, have you at least started RexxMast in some fashion, either through
your User-Startup, WBStartup or double-clicking on it’s icon?

I know it seems obvious, but you wouldn’t believe the problems some people
have, (right Ash? :)

If you’re not sure, just run RexxMast, if it has already been run it will
tell you the server is already running.

Script Format

Possibly the reason is something as simple as you haven’t made the first
line of the script a comment. If the first line isn’t a comment ARexx won’t
even give you the benefit of a error code, as far as it is concerned, it
isn’t a script.

No results

The script seems to run, but you don’t get the right results, you might
have forgotten to put options results near the start of the script
to enable the

RESULT
variable.

Opus ARexx commands fail but look OK

I’ve found that the Opus ARexx interface is very sensitive to the presence
or lack of quotes around commands. Jon would say that this is normal for
ARexx, but I don’t believe him :)

So if you are having problems with some Opus ARexx commands try putting
quotes around all or part of the line in question.

No output, wasn’t even executed

Sometimes a script won’t execute and you get no indication, it’s usually
because the interpreter (ARexx server) found a syntax fault with it when it
parsed it before execution.

Try executing it from a shell, you’ll get all error messages then.

1.70 Magellan II ARexx Tutorial: TroubleShooting - ARexx error codes

ARexx errors

The ARexx interpreter itself is pretty informative with it’s error messages
when a script fails, usually you will get an error number and the reason.

For example, copy the following to a seperate file called ’Fail.rexx’ and
then execute it from a shell with rx Fail.rexx.

/* Fail.rexx */
say "Hello world!

DOpusARexxTute 89 / 128

exit

If you did that, you’ll probably get an error message as below:

+++ Error 5 in line 2: Unmatched quote

This is pretty self-explanatory, there is a quote missing or extra in
line 2, in this case line 2 needs an extra quote on the end of the line:

say "Hello world!"

That’s enough to fix this script, and allow it to run.

Sometimes you only get an error number, (although I can’t remember the
last time I saw just a number), in that case you can just look up what it
means in the ARexx documentation that was included with OS2.04+ or ARexx 1.15
if you bought it seperately.

If the error has occured because of an Opus ARexx command, you will get an
error code generated for it but no message indicating what went wrong.

/* Fail2.rexx */
address ’DOPUS.1’
lister query 123456 path
path = result
exit

The above example, if you copy it to a file and execute it, will generate
an error code such as the one below:

3 *-* lister query 123456 path;
+++ Command returned 10

Not very informative is it? All you know is that it failed with error code
10 at line 3. However, you can look this up in the Opus manual or the Opus
ARexx AmigaGuide to find out what it really means, and you would get:

invalid lister handle

Opus also provides the
dopus error
ARexx command that you can use within

your scripts to provide more information. If you open a shell and type the
following:

rx "address ’DOPUS.1’;options results;dopus error 10;say result"

You’ll get the same message text as above.

So if we also use the ARexx special variable sigl , (sigl is the line
which caused a transfer of control, in this case the line that caused the
script to jump to the error routine), in the example above, so that it now
looks like:

/* Fail2.rexx */
options results
signal on error

DOpusARexxTute 90 / 128

address ’DOPUS.1’
lister query 123456 path
path = result
exit
error:
dopus error rc
say result’ in line ’sigl’:’ sourceline(sigl)

Now when you run it, instead of just the error code you got above, you’ll
get the message:

invalid lister handle in line 5: lister query 123456 path

More informative to you and to any users of your scripts.

A list of Opus ARexx error codes can be found
here

.

1.71 Magellan II ARexx Tutorial: TroubleShooting - ARexx tracing

ARexx tracing

Tracing is the ARexx version of SnoopDOS. You don’t need any special
programs to do it, if you have ARexx installed you already have the
capability.

What follows is a very simplified description of tracing, for more
information please refer to your ARexx documentation.

Your ARexx installation included four programs called TCO, TCC, TE and TS,
the names stand for:

Tracing Console Open
Tracing Console Close
Tracing End
Tracing Start

In a shell type TCO, you’ll notice a window open with no text and the title
ARexx. This is the Tracing Console output window, any ARexx script that
executes will be displayed in here line by line with any results.

The console isn’t enabled until you enter the command TS in your shell.

Now when you execute an ARexx script, you will see each line as it executes,
it’s line number and any results. Tracing forces causes the script to stop
after each result and present you with a prompt in the console. To have the
next line execute, simply press Enter at the prompt.

For the original Fail2.rexx script in
TroubleShooting - ARexx error codes

,
the console output will look like this:

1 *-* ;

DOpusARexxTute 91 / 128

2 *-* options results;
>+> <-- This is the prompt.

3 *-* address ’DOPUS.1’;
>+>

4 *-* lister query 123456 path;
>>> "LISTER QUERY 123456 PATH"

>+>
5 *-* path = result;

>>> "RESULT"
>+>
6 *-* exit;

As you can see, no error is generated for this script, even though you know
it isn’t a valid lister handle. However, knowing what the script is supposed
to be doing, (getting the path of a lister), you know that the path should
not equal "RESULT". This should indicate to you that something went wrong
when you asked for the path in the lister query statement.

If any major problem occured that caused the script to terminate, then an
error code with text will be displayed as well, but only for the normal ARexx
commands.

To end tracing simply enter the TE command in a shell, then the TCC command
to close the console. The console will not be closed until you have
acknowledged any outstanding prompts.

Tracing can also be implemented from within your ARexx script with many
different options, please refer to the ARexx documentation.

1.72 Magellan II ARexx Tutorial: TroubleShooting - The OpusCLI

Opus provides an internal command called CLI .

This command provides a shell which generally behaves as does a normal
AmigaShell, with a couple of exceptions:

1) You can enter any internal Opus command and it will work providing you’ve
used the correct format, etc.

2) You can enter any Opus ARexx command by prefixing it with a +.

Create a menuitem/button/etc with the following function:

Function : Command CLI

That’s it! Now use the button or menuitem, a shell will open with the
following text in it:

Directory Opus 5 Command Line Interpreter v0.04
© Copyright 1997 by Jonathan Potter

Type ’help’ for help.
>

Let’s try an ARexx command, type the following at the prompt:

DOpusARexxTute 92 / 128

> +dopus error 10
--> Invalid lister handle

As you can see, you get an immediate response, try a few more:

> +dopus query background desktop
> +lister new
> +lister close all

So if you’re having trouble with an Opus ARexx command in a script, you can
try it out in the Opus CLI.

1.73 Magellan II ARexx Tutorial: Credits

This is where we thank all those people that made it all (im)possible:

First off, I guess, would have to be Jon Potter for creating the enormously,
bloate...eeerrr, useful, (yeah, that’s what I meant to say :) Directory Opus
v5+. While it’s not the only file management program available, it is the
only one that has the power to do what YOU want, and not what the programmer
thinks you want, (although I believe there were times when he thought he knew
better than the beta-testers, boy was he wrong).

It IS unrivalled on ANY platform.

Dr Greg Perry, who with firm hand and iron will has guided the unruly band
of beta-testers, (they really provided no input into the final product,
according to Greg and Jon :) towards the unattainable goal of a bug-free
product, (remember kids, inside every Directory Opus program there’s a free,
that’s right, FREE undocumented ’feature’ just for you). I believe he also
provided some source code.

Who else...oh yeah, how about Andrew Dunbar, (ex. of GPSoftware, now hiding
out in Mexico apparently, I’ve heard there’s no extradition from there to
Australia). He, who created such monoliths as the ’OpusFTP’ and ’Andrew’s
Filetype Creator’, (although it has been said that it really means ’Automatic
Filetype Creator’, we know better ;) I think he also provided Greg with
coffee. (BTW Andrew, if you’re watching, I’ll expect the first shipment next
month ;-)

How about Martin Steigerwald, who first planted the seed of a Opus-Plus
CD firmly in everybodies mind, (in fact it was more deeply rooted than
Windows95, and just as hard to get rid of), and then when it seemed to be
cancelled due to lack of interest, (like we all wish Windows was), was there
to witness the rebirth.

And what a birth it was, it came out kicking and screaming, trying
desperately to avoid the light of day. Yes that’s right, it’s Martin’s
fault that what little spare time I get to myself was subverted into a
non-profit venture.

Now that I have that off my chest...:^)

All the users out there, who in support of this great product, should buy
two copies. Give one to your mum, she’ll love it. (It’ll be the most
expensive drinks coaster she’ll ever recieve.)

DOpusARexxTute 93 / 128

I really should mention all those people whose ARexx scripts I pilfered and
butchered to my own ends in the composing of this tutorial. My thanks to the
following: Edmund Vermeulen, Sylvain Bourcier, Leo Davidson and all those
others whose scripts I found somewhere long ago and can’t remember.

Last but not least, those poor, unfortunate beta-testers. They worked for
a pittance, braved ferocious HD-eating bugs, were beaten unmercifully,
tirelessly worked through the night, submitted idea after idea after idea....
only to have them all thwarted at the very last instant but those nasty,
overbearing programmers.

Nonetheless, they have managed to win minor battles, skirmishes, all in the
name of those many users who would have otherwise had no collective voice
with which to speak. A few of us fell along the wayside, unable to keep up
with the demands being placed upon their pitiful resources, we remember those
with fond...er...memories.

People the likes of Leo, Edmund, Peter (a couple of them), Dave (couple of
them too, I think, could be three by the time I finish this), and quite a few
others, who now only exist as a name in the Directory Opus About credits, (by
the way chaps, there’s a rumour going around that if you don’t send in your
money this month you’ll be removed from the credits. Leo, because you’ve
also got a picture in there, the price has doubled :)

I never realised until I sat and watched the scrollies in the About just
how long I’ve been testing this program, geezz I can remember most of these
guys, looks like you and me, Trevor, are the ’old guys’.

Hats off to you chaps, you deserve everything you get.

Oh yeah, I guess I should mention Commodore in here somewhere....I think
that will do.

I think that about sums it up...’Sorry, what was that Greg?’ ’Oh right,
I’ve just been told there’s a vacancy for a beta-tester...’

1.74 Magellan II ARexx Tutorial: Dopus User Position

Gullible aren’t you :^)

1.75 Magellan II ARexx: Results from commands.

Results from commands.

If a command returns a value or information, the data will generally be
returned in the RESULT variable. The only exceptions to this are the

dopus getdesktop
,
dopus getstring
and
lister getstring
commands

which return information in the special DOPUSRC variable.

DOpusARexxTute 94 / 128

Error
codes are returned in the RC variable.

You must include the line "OPTIONS RESULTS" near the top of your script
to enable the RESULT variable. See an ARexx manual for more information.

1.76 Magellan II ARexx Tutorial: Error Codes

ARexx Error Codes

Lister handles are the actual address in memory of the lister structure.
Opus 5 will reject any non-valid handles with an

RC
of 10.

All commands that return data return it in
RESULT
(with the exception of

dopus getstring
,
dopus getdesktop
and
lister getstring

) or a specified
(stem) variable; if an error occurs, the error code is returned in

RC
.

An
RC
of 0 generally indicates that everything is ok.

Error codes are:-

1 RXERR_FILE_REJECTED
The file you tried to add was rejected by the current lister
filters.
Note that this is not an error, just a warning. The file is still
added, it will just not be visible until the filters are changed.

5 RXERR_INVALID_QUERY
RXERR_INVALID_SET

The query/set item you specified was invalid.

6 RXERR_INVALID_NAME
RXERR_INVALID_KEYWORD

The filename or keyword you specified was invalid.

8 RXERR_INVALID_TRAP
The trap you tried to remove didn’t exist.

10 RXERR_INVALID_HANDLE

DOpusARexxTute 95 / 128

The lister handle you gave was invalid.

12 RXERR_NO_TOOLBAR
The lister has no valid toolbar.

15 RXERR_NO_MEMORY
There wasn’t enough memory to do what you wanted.

20 RXERR_NO_LISTER
A lister failed to open (usually because of low-memory).

You can convert the error codes returned in
RC
into meaningful error

messages (for error reports and so on) with the
dopus error
command.

1.77 Magellan II ARexx Tutorial: Author

You might be wondering who wrote this tutorial, what he does for ←↩
a living,

how old he is, how long he’s been playing with his Amiga, how he got conned
into writing it, whether in fact he is a he.

Well, I can safely say I know all the answers to those questions, but for
the more investigative among you, my name is hidden in the guide somewhere.

A Clue:

"Let him who hath understanding reckon the number of the Beast, for it is a
human number. It’s number is six hundred and sixty-six."

- Iron Maiden, The Number of the Beast

BTW, you would have found it if you’d read the guide as it was meant to be
read, see

Format
.

1.78 ArcDir.dopus5: Intro

/*
$VER: ArcDir.dopus5 1.0 (31.7.96)
Written by Edmund Vermeulen (edmundv@grafix.xs4all.nl).

ARexx script for Directory Opus 5 to show the contents of an LhA or LZX
archive in an Opus lister and operate on the files and directories inside
the archive as if it is a normal directory.

Function : ARexx DOpus5:ARexx/ArcDir.dopus5 Browse {Qp} {f} {Ql}

DOpusARexxTute 96 / 128

Flags : Run asynchronously

*/

Welcome to Edmund Vermeulen’s ArcDir script for Directory Opus v5+.

I have split it up into sections in the hope of trying to describe how it
works in a relatively easy manner, (might not happen though, ’best laid plans
of mice and men...’, etc :)

At the top is Edmund’s introduction at the start of his script, I’m not
sure if the email address is still correct, we at the Opus Beta-testing
Clinic have not heard from Edmund for almost a year, (come back Edmund, Leo
misses you...Leo? LEO? Uh Oh, we’ve lost another one).

I’ve seperated the script into what I thought was the most logical parts,
the links to which are below. It probably won’t make much sense if you jump
from one spot to another, as they are shown in exactly the same order as you
encounter the statements in the script.

I’ll generally skip over the standard ARexx commands, only giving comment
when it is needed to clarify something else.

Setting up

Attaching the handler

Waiting for an Event

Simple Events

Event - DoubleClick

Event - Drop

Event - DropFrom

Event - Copy

Event - ViewCommands

Event - Not Supported

Event - Unknown

Cleaning Up

Parent/Root Action

Path Action

Delete Action

Make a Directory

Create Directories

DOpusARexxTute 97 / 128

Listing the Archive

Extracting Entries

Adding Entries

View Single Files

Getting Selected Entries

Patching Filenames

Getting Catalog String

Check for Valid Handler

Syntax Error

User Halts Script

Displaying Errors

Displaying a Requester

1.79 ArcDir.dopus5: Setup

Here we encounter the general checks and variables required ←↩
before we get

into the script proper.

1parse arg cmd ’ ’ portname ’ "’ arcfile ’" ’ handle ’ ’ arcsubdir
2
3address value portname
4options results
5options failat 21
6signal on syntax
7signal on halt
8signal on break_c
9lf = ’0a’x
10
11dopus getfiletype ’"’arcfile’"’ id
12arctype = result
13if arctype ~= ’LHA’ & arctype ~= ’LZX’ then
14 exit
15
16if ~show(’l’,’rexxsupport.library’) then
17 call addlib(’rexxsupport.library’,0,-30)
18
19if exists(’LIBS:locale.library’) then do
20 if ~show(l,’locale.library’) then
21 call addlib(’locale.library’,0,-30)
22 catalog = opencatalog(’ArcDir.catalog’,’english’,0)
23 end
24else

DOpusARexxTute 98 / 128

25 catalog = 0
26
27dopus version
28newopus = result ~= ’RESULT’ & translate(result,’.’,’ ’) >= 5.1215
29
30if upper(cmd) = ’BROWSE’ | handle = 0 then do
31 lister new
32 handle = result
33 lister set handle source
34 end
35else
36 lister empty handle
37
38call arclist

Line:
1 We parse in the arguments it was called with, the command (BROWSE or

GETDIR), the Opus portname (DOPUS.1 assumed), name of the file, the
lister handle and the sub-directory in the archive. The last is
used when ArcDir is called from within an ArcDir lister to open a new
lister with a sub-directory from the first. Make sense? It’s when
you shift-doubleclick on a directory within an ArcDir lister.

3 Address the port, DOPUS.1
4 Enable results, the

RESULT
variable.

5 Set the fail limit.
6 - 8 Jump to syntax, halt and break_c when any of those errors happen.
9 Set lf to equal ASCII code 10, a linefeed.

11 - 14 First Opus command, we get the Filetype ID of the file the script was
called with, and assign the variable arctype to it. If the ID wasn’t
LHA or LZX, (the two types of archives ArcDir deals with), then we
exit.

16 - 25 Load the rexxsupport.library if not already, load locale.library if
it exists and not loaded already. Then try to open the correct
ArcDir catalog file, set catalog to true if successful, false if not.

27 - 28 What version of Opus are we dealing with? If it’s 5.1215 or later,
then newopus is set to true.

30 - 36 What command did we call ArcDir with? If it was BROWSE then open a
new lister, store it’s handle and set it to SOURCE. If not,
(GETDIR), then display an empty cache in the current lister, if there
aren’t any, we’ll just clear the current one.

38 Call the routine which lists the archive in the lister.

1.80 ArcDir.dopus5: Handler

We attach a unique handler name to the lister and set which commands we
want to trap.

1handlername = ’ArcDir’handle
2lister set handle handler handlername quotes
3call openport(handlername)
4

DOpusARexxTute 99 / 128

5viewcommands = ’Read HexRead Show Play’ /* you may add other Opus commands if ←↩
you wish */

6notsupported = ’CopyAs Move MoveAs Rename Comment Protect’
7traps = ’Copy Delete MakeDir Parent Root ScanDir’ viewcommands notsupported
8do while traps ~= ’’
9 parse var traps trapcommand traps
10 dopus addtrap trapcommand handlername
11 end
12
13thishandle = handle
14lister set handle busy off

Line:
1 We make the handler name equal to ’ArcDir’ plus the handle of the

lister, since there can only be one lister with that handle it gives
a unique name.

2 Assign that handler to that lister, telling Opus we want quotes (")
surrounding every filename argument from the handler.

3 Enable the message port for that handler.
5 - 7 These are the events we’ll be trapping, supported and unsupported.
8 - 11 Loop around, picking up one command at a time until all are done,

and adding the trap to the handler.
13 - 14 Assign thishandle to the handle of our lister and make sure it’s not

busy.

1.81 ArcDir.dopus5: Capturing an event

OK, now we start waiting for the user to do something, when they do a
message packet will arrive.

1do until event = ’inactive’
2 if waitpkt(handlername) then do
3
4 packet = getpkt(handlername)
5 if packet ~= ’00000000’x then do
6
7 event = getarg(packet,0)
8 handle = getarg(packet,1)
9 namestr = getarg(packet,2)
10 user = getarg(packet,3)
11 pathstr = getarg(packet,4)
12 qualifier = getarg(packet,6)
13 deststr = getarg(packet,7)
14
15 if newopus then
16 lister wait thishandle quick
17 else do
18 lister query thishandle busy
19 if result = 1 then call delay(10)
20 end

Line:
1 An event of inactive means that the lister has been closed, so we

loop around waiting for it to happen.
2 This is where there script usually ’parks’ waiting for a message

DOpusARexxTute 100 / 128

packet, when a packet arrives this statement becomes true and the
script continues.

4 We get the message packet in variable packet.
5 If it isn’t a null packet we continue, otherwise we would end up

waiting for a real packet at line 2 again.
7 - 13 We get the arguments from the packet, assigning them to variables.

15 - 20 We see if the lister is busy, if it’s a late version of Opus we can
use lister wait , if it isn’t then we use lister query busy
command.

1.82 ArcDir.dopus5: Event - Miscellaneous

These are just the events that call sub-routines later in the ←↩
script.

1 select
2 when upper(event) = ’PARENT’ | upper(event) = ’ROOT’ then
3 call doparentroot
4
5 when event = ’Delete’ then
6 call dodelete
7
8 when event = ’MakeDir’ then
9 call domakedir
10
11 when event = ’reread’ | event = ’ScanDir’ then do
12 call delete(’T:ArcDir.list’handle)
13 call arclist
14 end
15
16 when event = ’path’ then
17 call dopath

Line:
1 Start of the Select...When conditional block.
2 - 3 Event is PARENT or ROOT, jump to

doparentroot
.

5 - 6 Event is Delete, jump to
dodelete

.
8 - 9 Event is MakeDir, jump to

domakedir
.

11 - 14 Event is reread or ScanDir, we delete the file containing the
contents of the archive, (for that handler), and call the

arclist
routine to generate another.

16 - 17 User has typed a path in to the path string gadget, so we jump to

dopath
.

DOpusARexxTute 101 / 128

1.83 ArcDir.dopus5: Event - doubleclick

The user has double-clicked on an entry, we work out what it was ←↩
and what

to do.

1 when event = ’doubleclick’ then do
2 if left(namestr,1) = ’"’ then
3 parse var namestr ’"’ namestr ’"’
4 if namestr = ’’ then
5 fileinfo.type = 1
6 else
7 lister query handle entry ’"’namestr’"’ stem fileinfo.
8 if fileinfo.type > 0 then do /* it’s a dir */
9 if qualifier = ’shift’ then do
10 lister new
11 newhandle = result
12 address command ’Copy >NIL: T:ArcDir.list’handle ’T:ArcDir.list’ ←↩

newhandle
13 lister set newhandle source
14 address command ’Run >NIL: <NIL: RX DOpus5:ARexx/ArcDir.dopus5 ←↩

GETDIR’ portname ’"’arcfile’"’ newhandle arcsubdir||namestr’/’
15 end
16 else do
17 arcsubdir = arcsubdir||namestr’/’
18 call arclist
19 end
20 end
21 else
22 call viewsingle
23 end

Line:
1 Event is a doubleclick of LMB over an entry.
2 - 3 If the left character of the entry is a " then we parse the name of

the entry out from between the quotes.
4 - 7 If namestr is empty, then we assume it’s a directory otherwise we do

a lister query entry on it and check it’s TYPE, (this is
different from it’s filetype).

8 If the TYPE is greater than 0 then it’s a directory otherwise it’s a
file.

9 - 15 It was a directory, we check to see whether a shift key was held
down. If it was: open a new lister, store it’s handle, copy the
archive contents list to another file for the new handler, set it to
SOURCE then call ArcDir.dopus5 on it with the command GETDIR, Opus’
ARexx port name, archive filename, handle of the new lister AND the
name of the directory on which we doubleclicked.

16 - 20 Shift wasn’t held down, so we add the name of the directory to the
path of the directory we are currently in and call the routine

arclist
.

21 - 23 We doubleclicked on a file, so we call the
viewsingle
routine.

DOpusARexxTute 102 / 128

1.84 ArcDir.dopus5: Event - drop

Someone dropped something on our ArcDir lister, they’re going to ←↩
pay for

that!

1 when event = ’drop’ then do
2 parse var namestr ’"’ droppath ’"’
3 if pos(right(droppath,1),’/:’) > 0 then
4 lister read handle ’"’droppath’"’ force
5 else do
6 parse var namestr ’"’ dropfile ’"’
7 if pos(’:’,dropfile) = 0 then do
8 lister query user path
9 dropfile = result||dropfile
10 end
11 dopus getfiletype ’"’dropfile’"’ id
12 if result = ’LHA’ | result = ’LZX’ then do
13 arctype = result
14 arcfile = dropfile
15 arcsubdir = ’’
16 call delete(’T:ArcDir.list’handle)
17 call arclist
18 end
19 else do
20 allents = namestr
21 call getall
22 otherhandle = user
23 call arcadd
24 end
25 end
26 end

Line:
1 The event was drop which means something was ’dropped’ onto our

lister, if they had dragged from our lister and dropped onto another
one then it would be a dropfrom event.

2 We parse what was dropped on us in namestr from between the quotes,
(I’ll call it thing just to give it a name :)

3 - 4 If the right character of thing is a ’:’ or a ’/’ then they dropped
either a device on the lister or a directory. So we’ll just read
that path into the lister, this will kill our handler.

5 - 10 It wasn’t a device/directory, what a relief, so now we parse it again
giving it the name dropfile. If it doesn’t contain a ’:’ character
then we need to find out where it came from by querying the path of
the lister whose handle was given in variable user. We then let
dropfile equal the path and the filename.

11 We find out what filetype ID the file has.
12 - 18 If it was an LZX or LhA archive then we set arctype to the ID,

arcfile to the filename, the initial archive directory as root,
delete ArcDir’s current working archive contents list and call the

arclist
routine to generate a new one on the new archive.

19 - 25 OK, it’s not a device, directory or another archive, must be a file
or a directory! We make allents equal the namestr argument then

DOpusARexxTute 103 / 128

call
getall
to get all the names of the entries that were dropped

on the lister. We then set otherhandle to equal the handle of the
lister where the files/dirs came from and call the

arcadd
routine

to add them to the archive.

1.85 ArcDir.dopus5: Event - dropfrom

A ’dropfrom’ event, someone took something out of our lister and ←↩
dropped it

on another one, thieves!

1 when event = ’dropfrom’ then
2 if qualifier = ’shift’ then do
3 parse var namestr ’"’ namestr ’"’
4 lister query handle entry ’"’namestr’"’ stem fileinfo.
5 if fileinfo.type > 0 then do
6 address command ’Copy >NIL: T:ArcDir.list’handle ’T:ArcDir.list’ ←↩

user
7 address command ’Run >NIL: <NIL: RX DOpus5:ARexx/ArcDir.dopus5 ←↩

GETDIR’ portname ’"’arcfile’"’ user arcsubdir||namestr’/’
8 end
9 end
10 else do
11 allents = namestr
12 call getall
13 otherhandle = user
14 call arcextract
15 end

Line:
1 Event is dropfrom, dragged from the ArcDir lister and dropped onto

another one.
2 Were they holding down a shift key when they dragged and dropped?
3 - 4 They were! Get the name of the entry from between the quotes.
5 Find out what type of entry it was, if it’s a file the type will be

less than 0, if it’s a directory it will greater than 0.
6 - 9 It was a directory, so we copy across the ArcDir archive contents

list to a new file using the handle of the ’dropped’ on lister.
Then we run the ArcDir script on the other lister with the GETDIR
command, Opus’ ARexx port name, the name of the archive, the handle
of the other lister and the archive sub-directory that we dropped on
that lister.

10 - 15 It was files/dirs that we dropped on to the other lister, we make
allents equal the string of filenames that was sent in the packet,
call the

getall
routine to seperate it into indiviual file/dir

names, set the otherhandle to the handle of the other lister
specified in the packet and then call the

arcextract

DOpusARexxTute 104 / 128

routine to
extract the files/dirs.

1.86 ArcDir.dopus5: Event - Copy

The user selected some entries in a lister and then hit the copy ←↩
button.

1 when event = ’Copy’ then do
2 lister query handle selentries
3 allents = result
4 call getall
5 if handle = thishandle then do
6 otherhandle = user
7 call arcextract
8 end
9 else do
10 otherhandle = handle
11 handle = user
12 call arcadd
13 end
14 end

Line:
1 It’s a Copy event so let’s do it.
2 - 4 We ask for a list of all selected entries storing the result in

allents, then call the
getall
routine to seperate the list into

seperate names and types.
5 - 8 If the handle given in the packet matches the handle for our ArcDir

lister, then we are copying from the ArcDir lister to the other one,
(extracting entries from the archive), so we set otherhandle to the
handle for the other lister and call the

arcextract
routine.

9 - 13 Otherwise, we’re copying to the ArcDir lister, (adding entries to the
archive), so we make otherhandle equal to the other lister’s
handle, handle equal to the ArcDir handle and call the

arcadd
routine.

14 End of the When loop.

1.87 ArcDir.dopus5: Event - View commands

You had a bunch of files selected and then caused a Read, ←↩
HexRead, Show or

Play event. ArcDir will work upon the first selected.

1 when pos(event,viewcommands) > 0 then do

DOpusARexxTute 105 / 128

2 lister query handle firstsel
3 parse var result ’"’ namestr ’"’
4 lister select handle ’"’namestr’"’ off
5 lister refresh handle
6 call viewsingle
7 end

Line:
1 The event matched one in our viewcommands string set back

here
.

2 We get the name of the FIRST selected entry.
3 Parse the result out from between the quotes.
4 Turn the selection state for the entry to off.
5 Refresh the lister display so you see the selection state change.
6 Call the

viewsingle
routine on that one entry.

7 End of the When loop.

1.88 ArcDir.dopus5: Event - Unsupported

If you end up here it means you specifically used an event that ←↩
was in the

unsupported list...NAUGHTY!

1 when pos(event,notsupported) > 0 then do
2 lister set handle busy on
3 call displayerror(getcatstr(23,’Command not supported in ArcDir.’))
4 lister set handle busy off
5 end

Line:
1 Compare the event against the list of not supported commands set back

here
.

2 Set the lister state to busy.
3 Get the

displayerror
routine to...eerr...display an error message,

translating if necessary through
getcatstr

.
4 Set the lister back to idle state.
5 End of the When loop.

1.89 ArcDir.dopus5: Event - Anything else

DOpusARexxTute 106 / 128

If you got to this bit, it means that we recieved an event we don’t know
about. Time for you to brush up on your ARexx skills and add more :)

1 otherwise
2 nop
3 end
4
5 lister set handle busy off
6 call reply(packet,0)
7 end
8 end
9 end

Line:
1 - 3 The Otherwise statement in the Select...When conditional block, we

recieved an event we didn’t recognise, so we do nothing.
5 Turn off the busy state of the lister.
6 Reply to the message packet we recieved, YOU MUST DO THIS!!!!
7 - 9 End of ’if packet...’.

End of ’if waitpkt...’.
End of ’do until...’.

1.90 ArcDir.dopus5: Cleaning Up

We recieved an event of ’inactive’, (the user closed the lister), so we
start cleaning up.

1call delete(’T:ArcDir.list’handle)
2call closeport(handlername)
3if catalog ~= 0 then
4 call closecatalog(catalog)
5exit

Line:
1 We delete the archive list that ArcDir was using to list the archive.
2 Close the message port.
3 - 4 If we opened a catalog, then we close it.
5 Bye Bye

1.91 ArcDir.dopus5: Parent/Root action

The user has clicked on the Parent or Root button, or used the ←↩
keyboard

shortcuts.

1doparentroot:
2 if arcsubdir = ’’ then do
3 cuthere = lastpos(’/’,arcfile)
4 if cuthere = 0 | upper(event) = ’ROOT’ then
5 cuthere = pos(’:’,arcfile)
6 normaldir = left(arcfile,cuthere)

DOpusARexxTute 107 / 128

7 if qualifier = ’shift’ then do
8 lister new normaldir
9 newhandle = result
10 lister wait newhandle
11 lister set newhandle source
12 end
13 else do
14 lister set handle title
15 lister read handle normaldir
16 end
17 end
18 else do
19 if upper(event) = ’ROOT’ then
20 newsubdir = ’’
21 else do
22 cuthere = lastpos(’/’,left(arcsubdir,length(arcsubdir) - 1))
23 newsubdir = left(arcsubdir,cuthere)
24 end
25 if qualifier = ’shift’ then do
26 lister new
27 newhandle = result
28 address command ’Copy >NIL: T:ArcDir.list’handle ’T:ArcDir.list’newhandle
29 lister set newhandle source
30 address command ’Run >NIL: <NIL: RX DOpus5:ARexx/ArcDir.dopus5 GETDIR’ ←↩

portname ’"’arcfile’"’ newhandle newsubdir
31 end
32 else do
33 arcsubdir = newsubdir
34 call arclist
35 end
36 end
37 return

Line:
1 Sub-routine label.
2 - 17 If arcsubdir is empty, it means we’re in the root directory of

the archive. We then check to see if there is a ’/’ character
starting from the end of arcfile, (which is the name of our
archive with full path, for example - RAM:Foo/bar.lha), if there is
no ’/’ then we must be in the root of the device and we get the
position of the ’:’. normaldir is then set to the path where our
archive is, so if it was RAM:Foo/bar.lha normaldir will be RAM:Foo/.
If the shift key was held down we open a new lister and read the
path specified in normaldir, we get it’s handle in
newhandle, wait until it’s idle and set it’s state to source.
If the shift key wasn’t held down, we set the titlebar to the default
and read the directory into the lister which kills our handler.

18 If arcsubdir wasn’t empty we start here.
19 - 20 If the event was ROOT then we set newsubdir to an empty string.
21 - 24 Otherwise we find the second last ocurrance of ’/’ and set

newsubdir to the path to the left of it, for example if
arcsubdir is RAM:foo/bar/who/ then newsubdir will
be RAM:foo/bar/.

25 - 31 If the shift key was held down, we open a new lister, get it’s
handle, copy the archive contents list to another file for the new
handler, set it to SOURCE then call ArcDir.dopus5 on it with the
command GETDIR, Opus’ ARexx port name, archive filename, handle of

DOpusARexxTute 108 / 128

the new lister AND the path in newsubdir.
32 - 35 The shift key wasn’t held down, so we set arcsubdir to newsubdir and

call
arclist
to update the entry display in the lister.

37 Return.

1.92 ArcDir.dopus5: Path gadget action

The user typed a string into the path gadget, so we got to go ←↩
and get the

path, bother.

1dopath:
2 if pos(right(namestr,1),’/:’) = 0 then
3 namestr = namestr’/’
4 if left(namestr,length(arcfile)) = arcfile then do
5 if namestr = arcfile’/’arcsubdir then
6 call delete(’T:ArcDir.list’handle)
7 else
8 arcsubdir = substr(namestr,length(arcfile) + 2)
9 call arclist
10 end
11 else do
12 cuthere = pos(’.LHA/’,upper(namestr))
13 if cuthere = 0 then
14 cuthere = pos(’.LZH/’,upper(namestr))
15 if cuthere > 0 then
16 arctype = ’LHA’
17 else do
18 cuthere = pos(’.LZX/’,upper(namestr))
19 if cuthere > 0 then
20 arctype = ’LZX’
21 end
22 if cuthere > 0 then do
23 call delete(’T:ArcDir.list’handle)
24 arcfile = left(namestr,cuthere + 3)
25 arcsubdir = substr(namestr,cuthere + 5)
26 call arclist
27 end
28 else do
29 lister read handle ’"’namestr’"’ force
30 end
31 end
32 return

Line:
1 Sub-routine label.
2 - 3 Check to see if the rightmost character of the path is a ’:’ or a

’/’, if it wasn’t then add a ’/’.
4 We check to see if the leftmost part of the path matches our current

archive name.
5 - 6 The path equalled our current path, so we do the equivalent of a

ReRead. Delete the current archive contents list...

DOpusARexxTute 109 / 128

7 - 8 Otherwise we set our current archive sub-directory to what was typed
in...

9 - 10 and call
arclist
to generate a lister display.

11 - 21 These lines are checking to see if the path typed in was actually
another archive name and setting cuthere to greater than 0
if it was.

22 - 27 If the path was another archive we delete the current archive
contents list, set arcfile to the name of the archive, set arcsubdir
to the sub-directory in the archive and call

arclist
to set up the

lister display for the new archive.
28 - 30 It wasn’t a path in the current archive, it wasn’t a new archive, it

must be a real path - so we read it into the lister, this will kill
our handler and it will now be a normal lister.

31 End of ’if left(namestr...’.
32 Return to where we came from.

1.93 ArcDir.dopus5: Delete action

The user has selected some entries in the archive and decided to ←↩
delete

them, so let’s get rid of them.

1dodelete:
2 lister set handle busy on
3 lister query handle selentries
4 allents = result
5 call getall
6 if entries = 0 then
7 return
8
9 lister query handle numselfiles
10 nfiles = result
11 lister query handle numseldirs
12 ndirs = result
13 call dorequest(’"’getcatstr(5,’Warning: you cannot get back’lf||,
14 ’what you delete! OK to delete:’lf||lf’%s file(s) and’lf||,
15 ’%s drawer(s) (and their contents)?’,nfiles,ndirs)’"’,
16 getcatstr(6,’Proceed|Cancel’))
17 if ~rc then
18 return
19
20 lister set handle title getcatstr(7,’Deleting from archive...’)
21 lister refresh handle full
22
23 select
24 when arctype = ’LHA’ then do
25 call open(’actionfile’,’T:actionfile’handle,’w’)
26 do i = 1 to entries
27 if type.i > 0 then
28 wild = ’/#?’

DOpusARexxTute 110 / 128

29 else
30 wild = ’’
31 call writeln(’actionfile’,’"’patch(arcsubdir||name.i,1)||wild’"’)
32 end
33 call close(’actionfile’)
34 address command ’LhA d -q -X -Qp -Qo "’patch(arcfile,0)’" @T:actionfile’ ←↩

handle
35 problem = rc > 0
36 address command ’Delete >NIL: T:LhA_ArcWork.#? QUIET’
37 problem = problem | rc = 0
38 call delete(’T:actionfile’handle)
39 end
40 when arctype = ’LZX’ then do
41 lzxcmd = ’LZX d -q -X0 --’ lzxkludge(patch(arcfile,0))
42 linelen = 0
43 n = 0
44 do i = 1 to entries
45 if type.i > 0 then
46 wild = ’/#?’
47 else
48 wild = ’’
49 dothis = lzxkludge(patch(arcsubdir||name.i,0)||wild)
50 linelen = linelen + length(dothis) + 1
51 if i = 1 | linelen > 255 then do
52 n = n + 1
53 dothese.n = dothis
54 linelen = length(lzxcmd) + length(dothis) + 1
55 end
56 else
57 dothese.n = dothese.n dothis
58 end
59 do i = 1 to n
60 address command lzxcmd dothese.i
61 problem = rc > 0
62 if problem then
63 leave
64 end
65 end
66 end
67
68 if problem then
69 call displayerror(getcatstr(8,’Error while deleting from archive.’))
70 else do
71 call delete(’T:ArcDir.list’handle)
72 do i = 1 to entries
73 if name.i = ’’ then do
74 lister query handle separate
75 if result = ’filesfirst’ then do
76 lister query handle numfiles
77 entryno = result
78 end
79 else
80 entryno = 0
81 lister remove handle ’#’entryno
82 end
83 else
84 lister remove handle ’"’name.i’"’

DOpusARexxTute 111 / 128

85 end
86 end
87
88 lister set handle title ’ArcDir:’ arcname
89 lister refresh handle full
90 return

Line:
1 Sub-routine label.
2 Set the lister state to busy so the user can’t play around with it.
3 - 7 Get the list of selected entries and assign allents to it, then call

the
getall
routine to seperate them into individual file/dir names.

If there weren’t any entries selected then return.
9 - 18 Get the number of selected files and the number of selected

directories then tell the user he’s about to delete so many of each
via the

dorequest
routine translating via the
getcatstr
routine

if necessary. If he chose Cancel then return.
20 - 21 Change the lister titlebar to inform the user what we’re about to do,

and refresh the lister display so that he sees it.
23 - 66 The type of archive will select which block of statements in the

Select...When conditional block we execute. For this particular
example I’ll assume it’s a LhA archive because it’s easier.

25 We open a file in T: for writing to, it will contain the entries that
we want to delete.

26 - 32 A DO loop in which we check the TYPE of the entry, (as detected in
the

getall
routine), if it’s a directory we set wild to ’#?’,

if not then we set it to an empty string. We then write the entry to
the temporary file in T:,

patching
the string for strange

characters and adding wild. Keep doing it until there are no more
entries to add.

33 Close the temporary file.
34 Call the archiver command to delete the entries from the archive,

telling it to use the list in the temporary file.
35 If it wasn’t successful then problem will be set to 1.
36 Delete temporary output file.
37 If there was a problem with the archiver command or the delete

command, then problem will equal 1.
38 - 39 Delete the temporary action file in T: and exit the Select...When

block.
68 - 69 If there was a problem then tell the user using

displayerror
.

70 - 71 Otherwise, delete the archive contents list in T:, we’ll need a new
one.

72 - 85 We enter a DO loop to remove the entries from the lister display.
If the entry has an empty string for a name then we check the lister
seperation method, (files first, mixed or directories first). If

DOpusARexxTute 112 / 128

it’s files first then we ask for the number of files in the display
and make the entry number equal to the total number, if not we make
it equal to 0.

Remember, an entry with an empty string for a name is assumed to be
a directory, so if the seperation method is files first the first
directory entry will equal the number of files in the display (zero
numbering for entries). If the seperation method is directories
first or mixed, then the entry with no name is going to be the very
first, hence entry number will equal 0.
We then use

lister remove
to remove that entry number.

If the entry had a name then we just use
lister remove
to remove

the entry with that name.
88 - 89 Set the lister titlebar back to it’s normal display and refresh it so

that the user sees that the entries have gone.
90 Return.

1.94 ArcDir.dopus5: Making new directories

OK, you’ve decided to make a new directory in the archive, this ←↩
is where

you end up.

1domakedir:
2 lister set handle busy on
3 dopus getstring ’"’getcatstr(15,’Enter directory name’)’" 31 ""’ getcatstr ←↩

(16,’OK|Cancel’)
4 dirtomake = result
5 if dirtomake == ’’ | dirtomake = ’RESULT’ then
6 return
7
8 now = date(’i’) * 86400 + time(’s’)
9 call createdirs(dirtomake’/’)
10
11 select
12 when arctype = ’LHA’ then
13 address command ’LhA a -q -e -r -X -Qo "’patch(arcfile,0)’" T:ArcDir’ ←↩

handle’/’ ’"’patch(arcsubdir||dirtomake,1)’"’
14 when arctype = ’LZX’ then do
15 oldcurrent = pragma(’d’)
16 call pragma(’d’,’T:ArcDir’handle)
17 address command ’LZX a -q -e -r -X0 --’ lzxkludge(patch(arcfile,0)) ←↩

lzxkludge(patch(arcsubdir||dirtomake,0))
18 call pragma(’d’,oldcurrent)
19 end
20 end
21
22 if rc > 0 then
23 call displayerror(getcatstr(13,’Error while adding to archive.’))
24 else do

DOpusARexxTute 113 / 128

25 lister add handle ’"’dirtomake’" -1 1’ now ’----rwed’
26 lister refresh handle
27 end
28
29 address command ’Delete >NIL: T:ArcDir’handle ’ALL QUIET’
30 call delete(’T:ArcDir.list’handle)
31 return

Line:
1 Sub-routine label.
2 Set the lister to busy state, stop the user playing with it.
3 Put up a requester asking for the directory name, translating the

requester text if required with the
getcatstr
routine.

4 Get the result of the requester.
5 - 6 If it was an empty string or equalled ’RESULT’ then return. This

means you couldn’t make a directory called RESULT, this can be fixed
very easily by changing line 5 to read:

if dopusrc = 0 | dirtomake = ’’ then

8 We get the time since 1-Jan-1978 in seconds to use as the creation
date.

9 Call the
createdirs
routine with the name of our directory.

10 - 20 Depending upon the archive type, we now just add the directory
structure just created by

createdirs
to the archive, which of

course adds our new empty directory.
22 - 23 If the archiving wasn’t successful we tell you about it.
24 - 27 Otherwise, we add an entry to the lister using

lister add
using the

time worked out in line 8.
29 Delete the directory structure created by

createdirs
.

30 Delete the archive contents list that ArcDir works from since we now
need a new one.

31 Return from whence we came.

1.95 ArcDir.dopus5: Create Directories

1createdirs:
2 parse arg subdir
3 dirstocreate = ’T:ArcDir’handle’/’arcsubdir||subdir
4 here = 0
5 do until here = 0
6 here = pos(’/’,dirstocreate,here + 1)
7 if here > 0 then
8 call makedir(left(dirstocreate,here - 1))

DOpusARexxTute 114 / 128

9 end
10 return

Line:
1 Sub-routine label.
2 We get the directory that was passed to the routine and assign

subdir to it.
3 We set dirstocreate to the complete path in T: of the directory we

are going to create, for example if we wanted to create a directory
called ’help’ under a sub-directory of ’wanted’ then ’dirstocreate’
will be ’T:ArcDir12345678/wanted/help/’. The ArcDir12345678 is the
unique name of the handler associated with this lister from the

here
.

4 Set here to 0.
5 - 9 This loop cycles around creating the directories a sub-level at a

time. With the example in line 3 above, it would first create
T:ArcDir12345678/, then T:ArcDir12345678/wanted/, then
T:ArcDir12345678/wanted/help/.

10 We return.

1.96 ArcDir.dopus5: Listing the archive

This routine is the heart of the script, without it the handler ←↩
wouldn’t

work very well at all.

What it does is create a list of the archive contents using the list
command of the various archivers, a seperate program called ArcDirList then
reformats this output into something a bit easier and quicker for the script
to understand.

The script works from this list when you change directories, when you add
or delete files from the archive a new list has to be generated to keep the
lister display up to date.

1arclist:
2 lister set handle busy on
3 lister clear handle
4 lister set handle title getcatstr(1,’Listing archive...’)
5 lister set handle path arcfile’/’arcsubdir
6 lister refresh handle full
7
8 if ~exists(arcfile) then do
9 call displayerror(getcatstr(22,’Error: archive not found’))
10 return
11 end
12
13 if ~exists(’T:ArcDir.list’handle) then do
14 select
15 when arctype = ’LHA’ then
16 address command ’LhA >T:ArcDir.list’handle ’vv -N -X -Qw -Qo "’arcfile ←↩

’"’
17 when arctype = ’LZX’ then

DOpusARexxTute 115 / 128

18 address command ’LZX >T:ArcDir.list’handle ’v -X0 --’ lzxkludge(patch(←↩
arcfile,0))

19 end
20 if rc > 0 then
21 call displayerror(getcatstr(2,’Error while listing archive.’))
22 end
23
24 oldcurrent = pragma(’d’)
25 call pragma(’d’,’DOpus5:C’)
26 address command ’ArcDirList >T:ArcDir.list’handle’@ T:ArcDir.list’handle ’"’ ←↩

patchstar(arcsubdir)’"’
27 call pragma(’d’,oldcurrent)
28
29 if ~open(’tempfile’,’T:ArcDir.list’handle’@’,’r’) then do
30 call displayerror(getcatstr(24,’ArcDirList not found!’))
31 return
32 end
33 thisline = readln(’tempfile’)
34 do while thisline ~= ’’
35 lister add handle thisline
36 thisline = readln(’tempfile’)
37 end
38 call close(’tempfile’)
39 call delete(’T:ArcDir.list’handle’@’)
40
41 cuthere = lastpos(’/’,arcfile)
42 if cuthere = 0 then
43 cuthere = lastpos(’:’,arcfile)
44 arcname = substr(arcfile,cuthere + 1)
45 lister set handle title ’ArcDir:’ arcname
46 lister refresh handle full
47 return

Line:
1 Sub-routine label.
2 - 6 Set the state of the lister to busy, clear the lister display, change

the titlebar to say ’Listing archive...’, set the path gadget to the
path within the archive and refresh the lister display so we see all
these changes.

8 - 11 Check to see if the archive exists, if it doesn’t return a nasty
message translating through

getcatstr
if necessary.

13 - 19 If an archive contents list doesn’t currently exist, we use the
appropriate archiver to generate another one.

20 - 22 If there was an error listing the archive, tell the user.
24 - 27 Get the current directory, change directory to DOpus5:C so we can run

ArcDirList to format the output from the archivers in lines 13-19.
Then change back to the directory we were originally in.

29 - 32 We try to open the reformatted archive contents list, if we can’t we
display an error message and return.

33 - 37 We read a line of the file then enter a DO loop until there is
nothing more to be read from the file. We add the line we read
initially to the lister display, then read another, add it, read
another, and so on until all entries have been read and added.

38 - 39 Close the file and delete the temporary file.
41 - 45 Here we look for a ’/’ or a ’:’ in the arcfile variable, when we find

DOpusARexxTute 116 / 128

it we set arcname to everything to the left of it and then set the
titlebar to ’ArcDir:’ plus the archive name.

46 Refresh the lister display so we see all the entries and titlebar
changes.

47 Return to the calling function.

1.97 ArcDir.dopus5: Extracting from the archive

The user has copied something out of the lister, or dragged ←↩
something from

the lister and dropped it on another one. Either way we need to extract it.

1arcextract:
2 lister set handle busy on
3 if otherhandle = 0 then
4 if newopus then
5 winpath = deststr
6 else do
7 call displayerror(getcatstr(9,’No destination selected!’))
8 return
9 end
10 else do
11 if checkhandler() then
12 return
13 lister set otherhandle busy on
14 lister query otherhandle path
15 winpath = result
16 end
17
18 lister query handle numdirs
19 anydirs = result > 0
20 mustmove = anydirs & arcsubdir ~== ’’
21 if mustmove then do
22 destpath = winpath’ArcDir’handle
23 call makedir(destpath)
24 destpath = destpath’/’
25 end
26 else
27 destpath = winpath
28
29 lister set handle title getcatstr(10,’Extracting from archive...’)
30 lister refresh handle full
31
32 select
33 when arctype = ’LHA’ then do
34 call open(’actionfile’,’T:actionfile’handle,’w’)
35 do i = 1 to entries
36 if type.i > 0 then
37 wild = ’/#?’
38 else
39 wild = ’’
40 call writeln(’actionfile’,’"’patch(arcsubdir||name.i,1)||wild’"’)
41 end
42 call close(’actionfile’)

DOpusARexxTute 117 / 128

43
44 if anydirs then
45 cmd = ’x’
46 else
47 cmd = ’e -x2’
48 address command ’LhA’ cmd ’-q -a -C0 -X -Qo "’patch(arcfile,0)’" "’ ←↩

destpath’" @T:actionfile’handle
49 problem = rc > 0
50 call delete(’T:actionfile’handle)
51 end
52 when arctype = ’LZX’ then do
53 if anydirs then
54 cmd = ’x’
55 else
56 cmd = ’e’
57 lzxcmd = ’LZX’ cmd ’-q -a -C0 -X0 --’ lzxkludge(patch(arcfile,0))
58
59 linelen = 0
60 n = 0
61 do i = 1 to entries
62 if type.i > 0 then
63 wild = ’/#?’
64 else
65 wild = ’’
66 dothis = lzxkludge(patch(arcsubdir||name.i,0)||wild)
67 linelen = linelen + length(dothis) + 1
68 if i = 1 | linelen > 255 then do
69 n = n + 1
70 dothese.n = dothis
71 linelen = length(lzxcmd) + length(dothis) + 1
72 end
73 else
74 dothese.n = dothese.n dothis
75 end
76
77 oldcurrent = pragma(’d’)
78 call pragma(’d’,destpath)
79 do i = 1 to n
80 address command lzxcmd dothese.i
81 problem = rc > 0
82 if problem > 0 then
83 leave
84 end
85 call pragma(’d’,oldcurrent)
86 end
87 end
88
89 if problem then
90 call displayerror(getcatstr(11,’Error while extracting from archive.’))
91 else
92 do i = 1 to entries
93 lister select handle ’"’name.i’"’ off
94 end
95
96 lister set handle title ’ArcDir:’ arcname
97 lister refresh handle full
98

DOpusARexxTute 118 / 128

99 if mustmove then do
100 address command ’DOpus5:C/Move >NIL: "’destpath||arcsubdir’#?" "’winpath’"’
101 address command ’Delete >NIL: "’winpath’ArcDir’handle’" ALL QUIET’
102 end
103
104 if otherhandle ~= 0 then do
105 lister set otherhandle busy off
106 lister read otherhandle ’"’winpath’"’ force
107 end
108 return

Line:
1 Sub-routine label.
2 Change the ArcDir lister to state busy.
3 If the handle given to us for the other lister equals 0 then...
4 - 5 If it’s an Opus version later than 5.1215, (newopus was set back

here
), then we set winpath to the string returned in argument

7 of the message packet.
6 - 9 If it’s an earlier version of Opus, then we display an error message

and return immediately, (upgrade :)
10 - 16 If the handle didn’t equal 0 then we check to see if the other lister

is a custom handler, if it is then we return immediately. If it
isn’t we set the state of the other lister to busy and get it’s path
in winpath.

18 - 19 We see if there are any directories in our ArcDir lister display, if
there are we set anydirs to 1.

20 We set mustmove to 1 if anydirs was set to 1 and we are not in the
root directory of the archive.

21 - 25 If mustmove is true (1), then we will have to extract to a directory
structure in T:, so we call the

makedir
routine to create it and

set destpath to the created directory.
26 - 27 Otherwise we set destpath to equal winpath.
29 - 30 Set the ArcDir lister titlebar to tell the user what we’re doing and

refresh the display.
32 - 87 Now depending what type of archive it is, we do the appropriate part

of the Select...When conditional block, I’ll assume LhA because it’s
easier :)

34 We open a file in T: for writing to, it will contain the entries that
we want to extract.

35 - 41 A DO loop in which we check the TYPE of the entry, (as detected in
the

getall
routine), if it’s a directory we set wild to ’#?’,

if not then we set it to an empty string. We then write the entry to
the temporary file in T:,

patching
the string for strange

characters and adding wild. Keep doing it until there are no more
entries to add.

42 Close the temporary file.
44 - 47 If anydirs was set to true (1), then we make the extraction method

’x’ (full paths) otherwise we set it to ’e -x2’ (ignore paths), see
the LhA docs.

DOpusARexxTute 119 / 128

48 Run the archiver with the name of our archive,
patching
for any

strange characters, and the list of files to extract.
49 If there was a problem set problem to true (1).
50 Delete the temporary file in T:.
51 End of the When block for LhA archives.
89 - 90 If there was a problem extracting entries, tell the user via the

displayerror
routine, translating if necessary through the

getcatstr
routine.

91 - 97 If there wasn’t any problem then we unselect all our selected
entries, set the ArcDir titlebar back to it’s normal display and do a
full refresh to update the lister display.

99 -102 If mustmove was true, then we need to move the extracted entries from
the directory structure in T: to the destination path, destpath.
Then we delete the directory structure in T:.

104-107 If otherhandle doesn’t equal 0, then there is a destination lister,
we set it’s state back to idle and force it to reread the directory.

108 We return.

1.98 ArcDir.dopus5: Adding to the archive

Well, the user has decided to Copy something to our lister or ←↩
dropped

something on us, either way we’ve now got the hard work of adding it to the
archive.

1arcadd:
2 if checkhandler() then
3 return
4 lister set handle busy on
5 lister set otherhandle busy on
6 lister query otherhandle path
7 frompath = result
8
9 mustcopy = upper(right(src,length(arcsubdir))) ~== upper(arcsubdir)
10 if mustcopy then do
11 homedir = ’T:ArcDir’handle’/’
12 call createdirs
13 end
14 else
15 homedir = left(frompath,length(frompath) - length(arcsubdir))
16
17 if mustcopy then
18 do i = 1 to entries
19 lister query otherhandle entry ’"’name.i’"’ stem fileinfo.
20 if fileinfo.type > 0 then
21 address command ’Copy "’frompath||name.i’" "T:ArcDir’handle’/’arcsubdir ←↩

||name.i’" ALL CLONE QUIET’
22 else

DOpusARexxTute 120 / 128

23 address command ’Copy "’frompath||name.i’" "T:ArcDir’handle’/’arcsubdir ←↩
’" CLONE QUIET’

24 end
25
26 lister set handle title getcatstr(12,’Adding to archive...’)
27 lister refresh handle full
28
29 select
30 when arctype = ’LHA’ then do
31 call open(’actionfile’,’T:actionfile’handle,’w’)
32 call writeln(’actionfile’,’"’patch(homedir,0)’"’)
33 do i = 1 to entries
34 call writeln(’actionfile’,’"’patch(arcsubdir||name.i,0)’"’)
35 end
36 call close(’actionfile’)
37
38 if pos(’.LZH/’,test) > 0 then
39 method = ’-0’
40 else
41 method = ’’
42 address command ’LhA r’ method ’-q -e -r -X -Qo "’patch(arcfile,0)’" @T: ←↩

actionfile’handle
43 problem = rc > 0
44 call delete(’T:actionfile’handle)
45 end
46 when arctype = ’LZX’ then do
47 lzxcmd = ’LZX u -q -a -e -r -X0 --’ lzxkludge(patch(arcfile,0))
48 linelen = 0
49 n = 0
50 do i = 1 to entries
51 dothis = lzxkludge(patch(arcsubdir||name.i,0))
52 linelen = linelen + length(dothis) + 1
53 if i = 1 | linelen > 255 then do
54 n = n + 1
55 dothese.n = dothis
56 linelen = length(lzxcmd) + length(dothis) + 1
57 end
58 else
59 dothese.n = dothese.n dothis
60 end
61
62 oldcurrent = pragma(’d’)
63 call pragma(’d’,homedir)
64 do i = 1 to n
65 address command lzxcmd dothese.i
66 problem = rc > 0
67 if problem then
68 leave
69 end
70 call pragma(’d’,oldcurrent)
71 end
72 end
73
74 if mustcopy then
75 address command ’Delete >NIL: T:ArcDir’handle ’ALL QUIET’
76
77 if problem then

DOpusARexxTute 121 / 128

78 call displayerror(getcatstr(13,’Error while adding to archive.’))
79 else do
80 do i = 1 to entries
81 lister select otherhandle ’"’name.i’"’ off
82 end
83 lister refresh otherhandle
84 call delete(’T:ArcDir.list’handle)
85 call arclist
86 end
87
88 lister set otherhandle busy off
89 return

Line:
1 Sub-routine label.
2 - 3 We call the

checkhandler
routine to make sure that the other lister

wasn’t a custom handler, if it was we return immediately.
4 - 5 Turn the state of both listers to busy so the user can’t play with

them.
6 - 7 We get the path of the other lister so we know where the files are

coming from and assign it to frompath.
8 This seems rather a complex way of doing things to me, but we set

mustcopy to true (1) if we’re not in the root directory of the
archive.

9 - 12 If mustcopy is true then we set homedir to a temporary directory in
T:, and call the

createdirs
routine to create it.

13 - 14 mustcopy wasn’t true so we set homedir to the path in the other
lister.

17 - 24 If mustcopy did get set in line 9, then we need to copy the files or
dirs to the directory structure created in T:. We use
lister query entry to get each entries TYPE, if it’s a file, (<0),

we copy it straight to the directory in T:, if it’s a directory,
(>0), we copy it’s directory structure to the directory in T:.

26 - 27 Change the lister’s titlebar to show what we’re doing, translating if
necessary through

getcatstr
.

29 Depending on what type of archive it was, LhA or LZX, the appropriate
block of statements in the Select...When conditional block gets
executed. I’ll just describe the LhA side, you can work out the
other :)

31 - 32 We open a file in T: for writing to, it will contain the entries that
we want to add. The first line we write is the variable homedir.

33 - 35 A DO loop in which we write the entry to the temporary file in T:,

patching
the string for strange characters. Keep doing

it until there are no more entries to add.
36 Close the temporary file.
38 - 41 If the archive ends in .LZH we set the archiver method to ’-0’ to

retain compatibility when we add the entries, (see LhA docs).
42 Call the archiver to add the entries

patching

DOpusARexxTute 122 / 128

for any strange
characters in the archive name and passing the list of entries to add
in the temporary file.

43 If there was a problem we set problem to 1.
44 Delete the temporary file.
45 End of the When block for LhA archives.
74 - 75 If mustcopy was set, then we delete the directory structure that was

created in T:.
77 - 78 There was a problem adding the files and RC got set to something

other than 0, so we display an error message via the
displayerror

routine.
79 - 86 There wasn’t a problem, so we unselect the files in the other lister

and refresh it’s display. We delete the archive contents list in T:
because it’s now out of date and call

arclist
to generate a new

one.
88 - 89 We set the state of the other lister to idle and return.

1.99 ArcDir.dopus5: Viewing a file

If you’ve doubleclicked on a file or selected a file and used ←↩
one of the

view commands, (read, show, play, etc), then you’ll end up in this routine.
Basically, it extracts the file to T: and then performs the specified

function on it.

1viewsingle:
2 lister set handle busy on
3 lister set handle title getcatstr(10,’Extracting from archive...’)
4 lister refresh handle full
5
6 select
7 when arctype = ’LHA’ then
8 address command ’LhA e -q -x2 -X -Qo "’patch(arcfile,0)’" T: "’patch(←↩

arcsubdir||namestr,1)’"’
9 when arctype = ’LZX’ then
10 address command ’LZX e -q -X0 --’ lzxkludge(patch(arcfile,0)) ’T:’ ←↩

lzxkludge(patch(arcsubdir||namestr,0))
11 end
12
13 if rc > 0 then
14 call displayerror(getcatstr(11,’Error while extracting from archive.’))
15
16 /* some creative ARexx programming :-) */
17 address command ’Run >NIL: <NIL: RX’,
18 ’"address’ portname’;’,
19 ’thisfile = ’’T:’namestr’’’;’,
20 ’command’ event ’’’""’’thisfile’’""’’;’,
21 ’command wait protect name ’’""’’thisfile’’""’’ set RWED;’,
22 ’do until ~exists(thisfile) | delete(thisfile);’,
23 ’call delay(200);’,
24 ’end"’

DOpusARexxTute 123 / 128

25
26 lister set handle title ’ArcDir:’ arcname
27 lister refresh handle full
28 return

Line:
1 Sub-routine label.
2 Make the lister busy so the user can’t disturb us.
3 Call

getcatstr
for a message translation if required,

and put it in the lister titlebar.
4 Refresh the lister display using FULL so that the titlebar is also

updated.
6 - 11 Using a Select...When conditional block, we extract the file to T:

depending on whether it is an LZX or LhA archive.
13 -14 If there was an error we call the

displayerror
routine to display

it passing along a translated message text if necessary.
16 - 24 As Edmund says: ’Some creative ARexx programming’ :) But all this

block of statements really does is create the following script,
(assuming the file’s name is ’foo.bar’ and the action was ’Read’):

address ’DOPUS.1’
thisfile = ’T:foo.bar’
command Read "T:foo.bar"
command wait protect name "T:foo.bar" set RWED
do until ~exists("T:foo.bar") | delete("T:foo.bar")

call delay(200)
end

And what it does is call the action upon the file in T:, set it’s
protection bits to RWED, then loop around until either the file no longer
exists or the file was successfully deleted.

26 - 27 Set the lister titlebar back to it’s usual display of the archive
name and refresh it so that the lister titlebar is updated.

28 Back to where we came from.

1.100 ArcDir.dopus5: Getting all the files

Any selected or dropped files have been passed in one variable ←↩
called

allents, each filename is surrounded by quotes and seperated by a space.
This routine seperates allents into individual entries and gets it’s type,

for example:

allents = "foo" "bar" "why"
file file dir

will become:

name.1 = "foo" type.1 = -1

DOpusARexxTute 124 / 128

name.2 = "bar" type.2 = -1
name.3 = "why" type.3 = 1

1getall:
2 entries = 0
3 do while allents ~= ’’
4 entries = entries + 1
5 parse var allents ’"’ name.entries ’"’ allents
6 if name.entries = ’’ then
7 type.entries = 1
8 else do
9 lister query handle entry ’"’name.entries’"’ stem fileinfo.
10 type.entries = fileinfo.type
11 end
12 end
13 return

Line:
1 Sub-routine label.
2 Set variable entries to 0.
3 Loop while allents isn’t an empty string.
4 Increment variable entries.
5 One of the many wonders of ARexx, here we parse variable allents,

extracting the first filename into name.entries and returning the
rest of the string back to variable allents.

Example: allents = "foo.zip" "bar.zip" "now.zip"
After: parse var allents ’"’ name.entries ’"’ allents

allents = "bar.zip" "now.zip"
name.entries = "foo.zip"

6 - 7 We had an entry with an empty string for a name in which case we
assume it’s a directory and set it’s type to 1.

8 - 11 Otherwise we do a
lister query entry
on it and get it’s entry type.

12 Loop around.
13 We return to the calling function.

1.101 ArcDir.dopus5: Patching filenames

These routines just deal with the fixing of filenames with strange
characters in them. I won’t go into them as they don’t really have anything
to do with Opus, just with the idiosyncracies of AmigaDOS, LZX and LhA.

1patch: /* patch filenames containing strange characters */
2 parse arg patched,doapo
3 if arctype = ’LZX’ then
4 strange = ’*#?|%()[~’
5 else
6 strange = ’*#?|%()[]~’
7 if doapo then
8 strange = strange"’"
9 pos = 1

DOpusARexxTute 125 / 128

10 do until here = 0
11 here = verify(substr(patched,pos),strange,’m’)
12 if here > 0 then do
13 pos = pos + here + 1
14 patched = insert("’",patched,pos - 3)
15 end
16 end
17 if arctype = ’LHA’ & left(patched,1) = ’@’ then
18 patched = ’%’patched
19 if arctype = ’LZX’ then
20 if length(patched) - lastpos(’/’,patched) > 30 then
21 patched = patched’#?’
22 return patched

1patchstar:
2 parse arg remain
3 patched = ’’
4 do until remain = ’’
5 parse var remain before ’*’ remain
6 patched = patched||before
7 if remain ~== ’’ then
8 patched = patched’**’
9 end
10 return patched

1lzxkludge:
2 parse arg string
3 if pos(’ ’,string) > 0 then
4 do while pos("’*",string) > 0
5 parse var string fore "’*" aft
6 string = fore’?’aft
7 end
8 if pos(’*’,string) = 0 then
9 string = ’"’string’"’
10 return string

1.102 ArcDir.dopus5: Getting catalog string

This routine checks to see if a catalog was opened back in
Setting Up

,
if there was then the translation will be fetched and returned to the calling
function.

1getcatstr:
2 parse arg msgno,msgstring
3 if catalog ~= 0 then
4 msgstring = getcatalogstr(catalog,msgno,msgstring)
5 do i = 3 to arg()
6 parse var msgstring fore ’%s’ aft
7 msgstring = fore||arg(i)||aft
8 end
9 return msgstring

Line:

DOpusARexxTute 126 / 128

1 Sub-routine label.
2 From the arguments passed to us, we get the message number used in

the catalog and the message text.
3 - 4 If a catalog was opened then we get the translated text using a

locale.library call.
5 - 8 Routine

dodelete
is the only routine that calls getcatstr with

more than three arguments any others will just fall through this bit.
We parse the string getting the text before and after the %s, then
format it substituting in arg(3) and arg(4) that were passed, (number
of files and directories).

9 Return the translated message text.

1.103 ArcDir.dopus5: Checking for valid handler

What’s happening here is that we are checking to make sure that the other
lister we’re using has not got a custom handler and returning the result to
whoever called us.

1checkhandler:
2 lister query otherhandle handler
3 return ~(result = ’RESULT’ | result = ’’)

Line:
1 The sub-routine label.
2 We ask for the handler associated with the other lister.
3 OK, if result = ’RESULT’ or an empty string then the statement inside

the brackets is true (1), but we are returning the opposite, hence
the ~ negation sign outside the brackets. So if there is no handler
associated with the lister we will return false (0).
If result did equal something other than RESULT and an empty string,
then the statement inside would be false (0) but we would return
true (1) because of the ~ outside.

1.104 ArcDir.dopus5: Syntax error

If a syntax error happens in the ArcDir script, it will jump to ←↩
here, we’ll

pass the result code, the error message and the line number to the routine
that will call the translate and display routines.

It’s routine stuff.

1syntax:
2 call displayerror(’Syntax Error’ rc’,’ errortext(rc) ’in line’ sigl’.’)
3 exit

Line:
1 Sub-routine label, in this case, for syntax errors.
2 Call the

DOpusARexxTute 127 / 128

displayerror
routine with RC, error text and line number.

3 It was a terminal error, so we exit.

1.105 ArcDir.dopus5: User halts script

Looks like the user used a control-C, or the command HI to terminate the
script, so we’ll try to exit cleanly.

1halt:
2break_c:
3 lister set thishandle handler
4 lister clear thishandle
5 lister set thishandle path
6 lister set thishandle title ’ArcDir.dopus5 halted.’
7 lister refresh thishandle full
8 lister set thishandle title
9 exit

Line:
1 - 2 Sub-routine labels, in this case since we want to do the same things

if either of these events occur, it’s OK to have them both together.
3 We clear the custom handler for this lister by setting it to nothing.
4 We clear the contents of the lister.
5 Set the path to nothing.
6 Set the title to say this lister is halted.
7 Do a full refresh so we get to see the changes above.
8 Set the lister title to the default.
9 Exit the script.

1.106 ArcDir.dopus5: Displaying errors

This routine basically just flashes the screen, changes the ←↩
lister title

to the message as well as calling the routine to translate the message into
the language set in Locale using the appropriate catalog.

1displayerror:
2 parse arg message
3 lister set handle title message
4 lister refresh handle full
5 command flash
6 call dorequest(’"’message’"’ getcatstr(4,’OK’))
7 lister set handle title ’ArcDir:’ arcname
8 return

Line:
1 Sub-routine label.
2 Parse the arguments for the message text.
3 Set the lister title to the message.
4 Refresh the lister display, we’re using the FULL keyword to update

DOpusARexxTute 128 / 128

the title as well.
5 Call the Opus internal command Flash, to flash the display and get

our attention.
6 Pass the message text to the

dorequest
routine via the
getcatstr

routine which will do the Locale translation.
7 After the message has been acknowledged in the

dorequest
routine

and returned, we change the lister title back to what it normally
displays.

8 Return from whence we came.

1.107 ArcDir.dopus5: Displaying a requester

This routine displays a requester on the screen with any passed ←↩
message

text, (including buttons).

1dorequest:
2 parse arg reqargs
3 if newopus then
4 lister request handle reqargs
5 else
6 dopus request reqargs
7 return

Line:
1 Sub-routine label.
2 Parse the arguments for the message text.
3 - 6 If we are using an Opus later than 5.1215 then we can use the

lister request
command, otherwise we’ll use the
dopus request

command to display the message text.
7 Return from whence we came.

	DOpusARexxTute
	DOpus Magellan II ARexx Tutorial
	Magellan II ARexx Tutorial: Introduction
	Magellan II ARexx Tutorial: Requirements
	Magellan II ARexx Tutorial: Resources
	Magellan II ARexx Tutorial: Format of this tutorial
	The Opus Screen/Window
	Magellan II ARexx Tutorial: DOpus Front and Back
	Magellan II ARexx Tutorial: Dopus Screen
	Magellan II ARexx Tutorial: Dopus Query
	Magellan II ARexx Tutorial: Dopus Set
	Magellan II ARexx Tutorial: Dopus Getdesktop
	Magellan II ARexx Tutorial: Dopus Desktoppopup
	Version and Errors
	Magellan II ARexx Tutorial: DOpus Version
	Magellan II ARexx Tutorial: DOpus Error
	Getting input from the user
	Magellan II ARexx Tutorial: DOpus Request
	Magellan II ARexx Tutorial: DOpus Getstring
	Magellan II ARexx Tutorial: Lister Request
	Magellan II ARexx Tutorial: Lister Getstring
	Opening and closing listers
	Magellan II ARexx Tutorial: Lister New
	Magellan II ARexx Tutorial: Lister Close
	Magellan II ARexx Tutorial: Lister Iconify
	Magellan II ARexx Tutorial: Lister Read
	Magellan II ARexx Tutorial: Lister Copy
	Magellan II ARexx Tutorial: Lister Wait
	Providing some feedback
	Magellan II ARexx Tutorial: Dopus Read
	Magellan II ARexx Tutorial: Dopus Progress
	Magellan II ARexx Tutorial: Lister Progress
	Magellan II ARexx Tutorial: Lister NewProgress
	Magellan II ARexx Tutorial: Finding and Setting Lister Attributes
	Magellan II ARexx Tutorial: Lister Query
	Magellan II ARexx Tutorial: Lister Set
	Magellan II ARexx Tutorial: Lister Set Position
	Magellan II ARexx Tutorial: Lister Visible
	Magellan II ARexx Tutorial: The Phantom is...
	Magellan II ARexx Tutorial: Manipulating Lister Entries
	Magellan II ARexx Tutorial: Dopus Getfiletype
	Magellan II ARexx Tutorial: Lister Query Entry
	Magellan II ARexx Tutorial: Lister Select
	Magellan II ARexx Tutorial: Lister Remove
	Magellan II ARexx Tutorial: Lister Add
	Magellan II ARexx Tutorial: Lister Addstem
	Magellan II ARexx Tutorial: Command
	Magellan II ARexx Tutorial: FTP Commands
	Magellan II ARexx Tutorial: Opus v4 functions
	Magellan II ARexx Tutorial: Integration
	Magellan II ARexx Tutorial: Opus and AWeb II v2.x
	Magellan II ARexx Tutorial: Some ideas
	Magellan II ARexx Tutorial: Opening a lister with the path of your current shell
	Magellan II ARexx Tutorial: Changing the shell path to the same as the lister
	Magellan II ARexx Tutorial: Improved DOS-DOpus script (Example 1)
	Example 6: Changing the background every 30 seconds
	Magellan II ARexx Tutorial: Simple ARexx Module #1
	Magellan II ARexx Tutorial: Simple ARexx Module #2
	Magellan II ARexx Tutorial: Multi-Command ARexx Module
	Magellan II ARexx Tutorial: A Simple Custom Handler for a Lister
	Magellan II ARexx Tutorial: A Simple Custom Handler for an AppIcon
	Magellan II ARexx Tutorial: Improving the inbuilt commands
	Magellan II ARexx Tutorial: Cloning source listers
	Magellan II ARexx Tutorial: Finding duplicated files in two listers
	Magellan II ARexx Tutorial: Adding a bit of Win95
	Magellan II ARexx Tutorial: Adding a directory tree function
	Magellan II ARexx Tutorial: An Opus v4 CopyWin replacement
	Magellan II ARexx Tutorial: An Opus v4 SwapWin replacement
	Magellan II ARexx Tutorial: TroubleShooting
	Magellan II ARexx Tutorial: TroubleShooting - The simple things
	Magellan II ARexx Tutorial: TroubleShooting - ARexx error codes
	Magellan II ARexx Tutorial: TroubleShooting - ARexx tracing
	Magellan II ARexx Tutorial: TroubleShooting - The OpusCLI
	Magellan II ARexx Tutorial: Credits
	Magellan II ARexx Tutorial: Dopus User Position
	Magellan II ARexx: Results from commands.
	Magellan II ARexx Tutorial: Error Codes
	Magellan II ARexx Tutorial: Author
	ArcDir.dopus5: Intro
	ArcDir.dopus5: Setup
	ArcDir.dopus5: Handler
	ArcDir.dopus5: Capturing an event
	ArcDir.dopus5: Event - Miscellaneous
	ArcDir.dopus5: Event - doubleclick
	ArcDir.dopus5: Event - drop
	ArcDir.dopus5: Event - dropfrom
	ArcDir.dopus5: Event - Copy
	ArcDir.dopus5: Event - View commands
	ArcDir.dopus5: Event - Unsupported
	ArcDir.dopus5: Event - Anything else
	ArcDir.dopus5: Cleaning Up
	ArcDir.dopus5: Parent/Root action
	ArcDir.dopus5: Path gadget action
	ArcDir.dopus5: Delete action
	ArcDir.dopus5: Making new directories
	ArcDir.dopus5: Create Directories
	ArcDir.dopus5: Listing the archive
	ArcDir.dopus5: Extracting from the archive
	ArcDir.dopus5: Adding to the archive
	ArcDir.dopus5: Viewing a file
	ArcDir.dopus5: Getting all the files
	ArcDir.dopus5: Patching filenames
	ArcDir.dopus5: Getting catalog string
	ArcDir.dopus5: Checking for valid handler
	ArcDir.dopus5: Syntax error
	ArcDir.dopus5: User halts script
	ArcDir.dopus5: Displaying errors
	ArcDir.dopus5: Displaying a requester

